
1

<Insert Picture Here>

Avneesh Pant

OFIWG – 17th June 2014 3rd party logo

3

Oracle IPC Communication Model

• Endpoint based communication model

– No connections exposed

• Support for both BCOPY and ZCOPY messaging

– Max message size currently limited to 1MB. May extend later

• Three distinct traffic class sizes

• Control messages/requests: 300-600 Bytes

• Cache Fusion transfers: 8K-32K

• Storage block transfers: 1MB

• Synchronous and asynchronous operations

– Use both signaled and silent completions

4

Oracle IPC Communication Model

• Utilize RDMA Read/Writes

– Discourage these in favor of ZCOPY messaging if possible

• Starting to leverage atomics

– Need extended atomics beyond currently specified by standard

– Detect capability of HCA/API at runtime to use these extensions

• Primarily access IB fabric using RDS due to connection

scaling issues

– Moved to RC/XRC for some critical components in latest release

– Looking at UD/DCT to address connection scaling

5

Oracle IPC Communication Model

• Message based communications

– No stream semantics

• Communication channels are simplex

– Sending and receiving endpoints. Can do away with QPs

conserving hardware resources

• Communication channels provide ordered, reliable, non-

duplicating messages between <send endpoint, target

endpoint>

• Endpoint addressed using tuple <IP, Port, Timestamp>

– 32 bit timestamp to distinguish different incarnation on same

IP:Port

6

Oracle IPC Connection Management

• Utilize RDMA CM extensively for connection setup

– Currently use address change for failover/failback

– Connect request does not have timeout

– Extend RDMA CM to support

• APM

• Additional Transports: XRC/DCT

• Have run into scaling issues with current implementation

– IBACM needs enterprise class support (keep cache consistent

across failover/failback)

– FD per process to ACM server does not scale with 30K

processes on a node. Memory mapped interface?

7

Oracle IPC Communication Model – Fault Tolerance

• Channels are resilient to network failures

– Oracle IPC requires IP addresses to never fail

– IPs are migrated to surviving ports/adapters

– Support both bonded interfaces as well as active/active

– Use RDMA CM address change events to track IP to HCA/Port

association

– Re-establish connection across address change events

– For active/active support both failover and failback to maximize

network throughput

– Looking to add support for APM in next release

• Still need address change event for failover across HCAs

8

Oracle IPC Communication Model – QoS/Partitioning

• Even with RC can get duplicate message across failover

– Maintain separate sequence numbers at our layer

• Provide differentiated services for communication flows

– Distributed Lock Manager messages are latency sensitive

– Database Log Writes are on dedicated VLs (100s to 4K byte)

– Storage IO uses RDMA Read/Writes on separate VLs

• Pkeys are used for partitioning/isolation between

databases on the fabric

– Increasing use in virtualized deployments

9

Oracle IPC Memory Management

• Oracle instance is a collection of processes and shared

memory

– All processes map the shared memory symmetrically

– ~90% of memory is used for caching DB blocks

– Remaining used for various types of memory pools

– Memory can be dynamically moved between pools and buffer

cache under pressure

– Want to perform ZCOPY/RDMA transfers from any process to

any shared memory address

– Large number of processes per node – around 75 processes per

hardware thread (15-20K processes on a 8 socket server)

10

Oracle IPC Memory Management

• Attempting to register each entire memory region in each

process is not scalable

– Oracle uses shared PD support.

– Single process (usually a fatal process) allocates a shared PD

and registers all memory with it

– Other processes use the same shared PD with their context

– Allow sharing of memory registrations across all processes

– Each process still creates separate QP/SQ/RQ/CQ etc.

– Would be useful if support is available in mainline code

11

Oracle IPC Memory Management

• Oracle discourages uses of RDMA if not needed

– Hard to “revoke” keys to local memory that is source or target of

RDMA. This can be frequent enough during txn aborts.

– Memory registered in granules. May have multiple outstanding

operations within granule across many processes at a time

– Revoking key requires deregistering entire granule which

impacts other ongoing transfers.

– Need a way to generate efficiently memory keys from a

previously registered region

• Preferably avoid call into OS i.e. generate keys

asynchronously on HCA via a new request

12

Oracle IPC Memory Management

• Memory keys can be considered overlays on currently

registered regions

– Underlying mapping is never changed. Registered shared

memory will never change during lifetime of instance

– Most times these are use once keys (request/response) so

ability to specify lifetime of key can avoid an explicit call to de-

allocate key

– Txn aborts can then perform an explicit de-allocate of overlay

key without impacting other operations

13

OFED Verbs Extensions: NUMA Support

• Most machines have deep NUMA hierarchies

• Would be good to have NUMA aware extensions

– Oracle attempts to use NUMA local HCAs for each process

– Extend device enumeration to be NUMA aware

– IB resource allocations can benefit from this as well

• Request CQ/QP memory to come from specific NUMA

domain

• NUMA affined allocation of interrupt vectors to CQs

14

OFED Verbs Extensions: NUMA Optimizations for

Event Mode

• Polling is not feasible with large number of processes

– Wait on OS fd for completion notification

– Latency under load is non-deterministic i.e. once yield CPU no

idea when process is scheduled back

– Interrupt dispatch latency across sockets can add significant

latency

– Minimize cross process interference due to interrupts

• Send and receive CQs. Request/response paradigm can

have both CQs use the same vector

• Selected vector affined to core process is running on.

15

OFED Verbs Extensions: Cancelling Receives

• For request/response patterns process queues receive

buffer to SRQ before sending request out

– In some cases response(s) may not arrive. Can be determined

by requestor

– Need ability to cancel these queued receives as subsequent

requests may use different response buffer.

– If this was possible we don’t require RDMA for most of these

block fetches as buffers can be queued for zero copy receives

• Cancel can be opportunistic i.e. either completes

successfully with data or with cancelled status

16

OFED Verbs Extensions: Triggered operation

• Some data transfers have inherent dependencies

– Could benefit from triggered operations that can highlight these

– Generalized mechanism to specify these operations

• Start WR when some currently submitted WR has completed

successfully (or not)?

• Dependent operation specified via <QPN, WRID> tuple.

Client responsible for guaranteeing WRID uniqueness

• QPs must be within same PD (also support shared PD

allowing inter-process triggered operation)

• Oracle has data dependence between serving dirty

blocks across networks and Log Write Completions

17

OFED Verbs Extensions: Completion Semantics

• May require richer completion semantics in future

– RDMA Write completions indicate nothing wrt remote memory

– Must issue a RDMA Read following write to detect completion

– Persistent Memory complicates things further – require writes to

percolate to persistent domain

– Allow specification of various completion semantics (HCA, Host,

Persist etc.)

• Allow specification of consistent RDMA Read operations

– Will require hardware support but got to start the discussion now

18

Questions?

