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Monitoring tools 

•  IB Health Check 
• D3.js visualizations 
• Perfquery balancing 

Available on github: 
https://github.com/bacaldwell/ 
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IB Health Check 

• Host-based shell script 
• Designed to be run from snmpd or from CLI 
• Returns Nagios status code 

0: OK 
1: WARNING 
2: CRITICAL 
3: UNKNOWN 
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IB Health Check 

• HCA and local link health 
–  Local errors check (HCA port) 
–  Remote errors check (switch port) 

• PCI width/speed of each HCA 
–  Identify failed hardware or firmware issues 
–  Appropriate slot placement 

• Port in up/active state 
• Link speed/width matches capability 
• SM lid is set 
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IB Health Check Output 

• CLI output 

Two interfaces, no errors: 

mlx4_1-ib0:OK ;; mlx4_1-ib1:OK ;; 

 

Two interfaces, LinkDownedCounter above threshold triggers warning: 
mlx4_1-ib0:WARNING - Direct-attached ddn-d-1 HCA-1 port 2: [LinkDownedCounter == 48] ;; \ 

mlx4_1-ib1:WARNING - Direct-attached ddn-d-0 HCA-1 port 2: [LinkDownedCounter == 66] ;; 

• Nagios view 
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Configuration 

•  /usr/local/etc/monitor_ib_health.conf 
oss:mlx4_0:1:56 

oss:mlx4_0:2:56 

oss:mlx4_1:1:56 

mds:mlx4_0:1:56 
•  /usr/local/etc/ib_node_name_map.conf 

# Compute nodes 

0x0002c903001c5e31      “oss1” 

0x0002c90300dde441      “oss2” 

# Core switch 

0x0002c903008726a0      “ibsw-core1 Spine 1” 

0x0002c903008726b0      “ibsw-core1 Spine 2” 

0x0002c903008726c0      “ibsw-core1 Spine 3” 

0x0002c903008476d0      “ibsw-core1 Line 1” 

0x0002c90300847790      “ibsw-core1 Line 2” 

0x0002c903008477f0      “ibsw-core1 Line 3” 
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D3.js visualizations 

• Explored pydot for visualizations IBUG 2013 
–  Too much information, wanted ability to collapse by switch 

(or chassis) 

• Discovered of D3.js from Florent’s IBUG 2014 
presentation 
–  JavaScript library written by Mike Bostock of New York 

Times 

• Demo 
–  https://github.com/bacaldwell/ib_d3viz 
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ib_d3viz Workflow 

Create ibnetdiscover output file: 
ibnetdiscover -p --node-name-map > fabric_ibnetdisc.out 

Create JSON file describing a graph: 
python ib_topology_graph.py -g fabric_graph.json fabric_ibnetdisc.out 

Creates JSON file describing a graph: 
… 

  “links”: [ 

    { “source”: 0, 

      “target”: 1320, 

… 

   ], 

  “nodes”: [ 

    { “group”: 0, 

      “name”: “’node1601 HCA-1’”, 

… 
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Full topology with data overlay 
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Clustered graph with collapsible nodes 
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Balanced perfqueries 

1.  Ports that are the direct neighbor of a node will always get assigned to that node for 
querying. 

2.  All link endpoints that make up paths between the all nodes part of the current job are 
identified. The number of links identified at this step relates to the number of nodes in the 
job, but grows very quickly nearing the total number of links in the fabric. 

3.  These links are allocated to nodes that are found on in the switch’s forwarding table (LFT) 
for that link’s port on the switch. This is in the reverse direction from the perfqueries, so 
routes will not be completely balanced. However, the hop count will remain minimized in 
the reverse direction. 

4.  From step 3 some imbalances will arise, but are kept in check by a static threshold of a 
difference of 5 between the node assigned the least number of link endpoints to query and 
the most loaded node. If the node picked by step 3 is past the threshold, the allocation 
script will instead choose the node with the least number of LID/ports assigned to it. 

5.  The per-node list of link endpoints to query is written to a file to be read later by each node 
when starting the actual queries. 
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Distribution of queries 
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Start with local port and direct neighbor 
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Identify what else needs to be queried 
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Use lft to prune “far” HCAs 
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Take per-node list and run perfquery 
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Summary 

•  InfiniBand monitoring tools on github: 
   https://github.com/bacaldwell 
 

1.  scalable-monitoring/monitor_ib_health 
2.  Ib_d3viz 
3.  balanced-perfquery 

• Please contribute! J 
 


