
ORNL is managed by UT-Battelle
for the US Department of Energy

Scripts for
InfiniBand
Monitoring

Blake Caldwell
April 30, 2015

2 Presentation_name

Monitoring tools

•  IB Health Check
• D3.js visualizations
• Perfquery balancing

Available on github:
https://github.com/bacaldwell/

3 Presentation_name

IB Health Check

• Host-based shell script
• Designed to be run from snmpd or from CLI
• Returns Nagios status code

0: OK
1: WARNING
2: CRITICAL
3: UNKNOWN

4 Presentation_name

IB Health Check

• HCA and local link health
–  Local errors check (HCA port)
–  Remote errors check (switch port)

• PCI width/speed of each HCA
–  Identify failed hardware or firmware issues
–  Appropriate slot placement

• Port in up/active state
• Link speed/width matches capability
• SM lid is set

5 Presentation_name

IB Health Check Output

• CLI output

Two interfaces, no errors:

mlx4_1-ib0:OK ;; mlx4_1-ib1:OK ;;

Two interfaces, LinkDownedCounter above threshold triggers warning:
mlx4_1-ib0:WARNING - Direct-attached ddn-d-1 HCA-1 port 2: [LinkDownedCounter == 48] ;; \

mlx4_1-ib1:WARNING - Direct-attached ddn-d-0 HCA-1 port 2: [LinkDownedCounter == 66] ;;

• Nagios view

6 Presentation_name

Configuration

•  /usr/local/etc/monitor_ib_health.conf
oss:mlx4_0:1:56

oss:mlx4_0:2:56

oss:mlx4_1:1:56

mds:mlx4_0:1:56
•  /usr/local/etc/ib_node_name_map.conf

Compute nodes

0x0002c903001c5e31 “oss1”

0x0002c90300dde441 “oss2”

Core switch

0x0002c903008726a0 “ibsw-core1 Spine 1”

0x0002c903008726b0 “ibsw-core1 Spine 2”

0x0002c903008726c0 “ibsw-core1 Spine 3”

0x0002c903008476d0 “ibsw-core1 Line 1”

0x0002c90300847790 “ibsw-core1 Line 2”

0x0002c903008477f0 “ibsw-core1 Line 3”

7 Presentation_name

D3.js visualizations

• Explored pydot for visualizations IBUG 2013
–  Too much information, wanted ability to collapse by switch

(or chassis)

• Discovered of D3.js from Florent’s IBUG 2014
presentation
–  JavaScript library written by Mike Bostock of New York

Times

• Demo
–  https://github.com/bacaldwell/ib_d3viz

8 Presentation_name

ib_d3viz Workflow

Create ibnetdiscover output file:
ibnetdiscover -p --node-name-map > fabric_ibnetdisc.out

Create JSON file describing a graph:
python ib_topology_graph.py -g fabric_graph.json fabric_ibnetdisc.out

Creates JSON file describing a graph:
…

 “links”: [

 { “source”: 0,

 “target”: 1320,

…

],

 “nodes”: [

 { “group”: 0,

 “name”: “’node1601 HCA-1’”,

…

9 Presentation_name

Full topology with data overlay

10 Presentation_name

Clustered graph with collapsible nodes

11 Presentation_name

Balanced perfqueries

1.  Ports that are the direct neighbor of a node will always get assigned to that node for
querying.

2.  All link endpoints that make up paths between the all nodes part of the current job are
identified. The number of links identified at this step relates to the number of nodes in the
job, but grows very quickly nearing the total number of links in the fabric.

3.  These links are allocated to nodes that are found on in the switch’s forwarding table (LFT)
for that link’s port on the switch. This is in the reverse direction from the perfqueries, so
routes will not be completely balanced. However, the hop count will remain minimized in
the reverse direction.

4.  From step 3 some imbalances will arise, but are kept in check by a static threshold of a
difference of 5 between the node assigned the least number of link endpoints to query and
the most loaded node. If the node picked by step 3 is past the threshold, the allocation
script will instead choose the node with the least number of LID/ports assigned to it.

5.  The per-node list of link endpoints to query is written to a file to be read later by each node
when starting the actual queries.

12 Presentation_name

Distribution of queries

HCA_5 HCA_6 HCA_9HCA_0 HCA_1 HCA_2 HCA_3 HCA_4

Line_1 Line_2

Spine_1

HCA_8HCA_7

TOR_1TOR_1

13 Presentation_name

Start with local port and direct neighbor

HCA_5 HCA_6 HCA_9HCA_0 HCA_1 HCA_2 HCA_3 HCA_4

Line_1 Line_2

Spine_1

HCA_8HCA_7

TOR_1TOR_1

14 Presentation_name

Identify what else needs to be queried

TOR_1

HCA_5 HCA_6 HCA_9

TOR_1

HCA_0 HCA_1 HCA_2 HCA_3 HCA_4

Line_1 Line_2

Spine_1

HCA_8HCA_7

15 Presentation_name

Use lft to prune “far” HCAs

TOR_1

HCA_5 HCA_6 HCA_9

TOR_1

HCA_0 HCA_1 HCA_2 HCA_3 HCA_4

Line_1 Line_2

Spine_1

HCA_8HCA_7

16 Presentation_name

Take per-node list and run perfquery

TOR_1

HCA_5 HCA_6 HCA_9

TOR_1

HCA_0 HCA_1 HCA_2 HCA_3 HCA_4

Line_1 Line_2

Spine_1

HCA_8HCA_7

17 Presentation_name

Summary

•  InfiniBand monitoring tools on github:
 https://github.com/bacaldwell

1.  scalable-monitoring/monitor_ib_health
2.  Ib_d3viz
3.  balanced-perfquery

• Please contribute! J

