	Use Case Description
	Kubernetes Multi-node Deployment (interactive mode application launch)

	Actors
	Fabric Manager, Administrator, Master Node, Worker nodes, Ethernet switches

	Description
	Create template and deploy multiple K8s Pods on multiple nodes

	Initial State
	· Master Node
· Running K8s Services
· Running etcd data base mgr
· Worker Nodes
· Running Kubelet service
· Running container runtime
· Docker, rkt, runc
· FM
· Running Redfish services
· Running CNI daemon
· Clusters configured, CIDR blocks (IP address pools) assigned
· Ethernet Network
· Master Node and Worker Nodes connected (cluster already created)

	Normal Flow
	· Admin: Create YAML Deployment and Services files describing micro-service containers, Pods, replications, and connections (internal and external)
· Admin: invoke ‘Kubectl apply ‘on Master node with YAML files as arg’s
· MN: Parse YAML, update etcd data base, select worker nodes
· MN: launch appropriate numbers of Pods on target worker nodes via kubelet
· WN: extract Pod descriptions from etcd data base
· MN: assign each Pod an Ethernet namespace, construct port connections according to YAML template
· WN: invoke CNI plugin, which will contact FM CNI daemon and obtain IP address for Pod
· WN: update etcd data base with Pod’s IP address, query IP address for other Pods in this deployment
· MN: parse YAML Services file and establish external IP address through which the deployment converses with clients
· MN: update etcd data base to include Services IP
· ??: Set up event monitoring for Deployment & the Service
· MN: monitor etcd data base status of deployment, adjust resource allocations as necessary
· Admin: invoke ‘Kubectl destroy‘ on Master node with YAML files as arg’s
· All: tear down connections, shut down processes on worker nodes, update etcd data base
Missing:
· Security key management
· Authentication and authorization steps

	Alternate Flow 1
	· Admin: Create YAML Deployment and Services files describing micro-service containers, Pods, replications, and connections
· Admin: invoke ‘Kubectl apply ‘on Master node with YAML files as arg’s
· MN: Parse YAML, update etcd data base, select worker nodes
· MN: launch appropriate numbers of Pods on target worker nodes via kubelet
· WN: extract Pod descriptions from etcd data base
· MN: assign each Pod an Ethernet namespace, construct port connections according to YAML template
· WN: invoke CNI plugin, which will contact FM CNI daemon and obtain IP address for Pod
· WN: update etcd data base with Pod’s IP address, query IP address for other Pods in this deployment
· MN: parse YAML Services file and establish external IP address through which the deployment converses with clients
· MN: update etcd data base to include Services IP
· ??: Set up event monitoring for Deployment & the Service
· MN: monitor etcd data base status of deployment, adjust resource allocations as necessary
· MN: Error – K8s controller cannot match Status of executing Pods to desired deployment because containing cluster has insufficient resources
· MN: ??? -need some mechanism to increase cluster resources, still researching how K8s might already handle this

Create a cluster

	Use Case Description
	Create a K8s cluster within a composable DC fabric

	Actors
	Fabric Manager, Resource manager, Composer, Administrator, Master Node, Worker nodes, Ethernet switches

	Description
	Instantiate a K8s cluster designed to run ML Ops as a priority

	Initial State
	· Diverse free pools of compute, memory, GPU, HSN, and storage resources are in power savings mode (offline)
· Diverse pools of compute, memory, GPU, HSN, and storage resources are available in existing clusters currently in service (online)
· Ethernet and online high speed Networks are running
· Other virtual clusters (K8s and others) running on the ‘online’ machines

	Normal Flow

	Composing Manager:
· Parse the cluster requirements
· Find potential cluster elements
· Consult Resource Managers for candidate elements
· RMs obtain inventory from various OFMFs directly or through aggregators, probably ahead of time
· RMs responsible for tracking logical resources
· Note: We don’t have a ‘logical resource model’ for memory in Redfish.
· How do we represent an aggregated memory ‘object’?
· MPI and shmem libraries will need to malloc shared data objects from FAM, not private DIMMs.
· Note: We don’t have a fabric agnostic method specified for hosts to share (map) local resources to the fabric.
· Craft potential cluster implementations
· Validate feasibility
· Extract specific attributes about the configuration
· Analyze acceptability
· Iterate until happy
· Create the cluster using the best candidate template
· Lock down the endpoint resources via RMs
· Create the fabric zone via the OFMF
· Activate the cluster
· Create required connections for cluster administration
· Launch cluster master (Master Node) and Worker Nodes
· MN and WNs create RPC services to communicate
· (Ethernet based?) RPC comms created
· Master Node creates etcd data base in shared storage
· MN maintains consistency via RAFT algorithm, which uses RPC communications
MN gives WNs access to etcd

	Alternate Flow 1
	·

Create a zone

	Use Case Description
	Create a zone to host a K8s cluster within a composable DC fabric

	Actors
	Fabric Manager, Resource manager, Composer, Administrator,

	Description
	Use Redfish ‘zone’ object to define a virtual, private network within the larger fabric

	Initial State
	· Diverse free pools of compute, memory, GPU, HSN, and storage resources are in power savings mode (offline)
· Diverse pools of compute, memory, GPU, HSN, and storage resources are available in existing clusters currently in service (online)
· Ethernet and online high speed Networks are running
· Other virtual clusters (K8s and others) running on the ‘online’ machines
· List of cluster members defined. Resources reserved by Composing Manager

	Normal Flow
	Composing Manager:
· Parse the list of cluster members
· Query cluster member endpoints for membership in existing ‘zones’
· Validate isolation
· What about multi-zone membership?
· Create a Redfish fabric zone object based on Redfish schema
· Do we need an OFMF utility to do this?
· Fill in the endpoints (resources) to be contained in the zone
· How do we indicate address pool restrictions?
· [bookmark: _GoBack]Do we indicate an optional ‘make symmetric connections’ task at the same call? <not needed if endpoint groups>
· Post the Redfish zone object to the OFMF’s resource tree
OFMF:
· OFMF: parse the HTTP request and post a new zone
· OFMF: calculate the new route table entries and patch appropriate switch or router table entries, if enabled
· policy may not enable routes until connections are enabled
· OFMF: update (patch) appropriate endpoint objects
· OFMF: update hardware as appropriate
· OFMF: respond to client with success

	Alternate Flow 1
	·

