(intel“) Look Insider

RPMEM 2.0
Intel next generation platform support for RDMA with PMEM

09/24/19
Chet Douglas - DCG NVMS

DCG
Data Center Group m
||

Remote Persistent Memory (RPMEM) 2.0

Intel Platform Value Prop (Cloud, Enterprise, HPC)

Initiator Node

Target (Remote) Node

OUT-OF-BAND TARGET
NVDIMM MEMORY
REGICNS &FLATFORM
CONFIGURATION

INFORMATION

. Increase performance with PMEM Wire protocol (libfabric AP l (libfabric API l
changes -
. Remove usage of non-allocating Writes __verbs profider | (__verbs provider |
. Remove extra messaging for some use cases [Iihrdmacm][iilibverbs] [T o][Iihrdmacm]
. Eliminate Target node interrupts & core message
handling 2\ 4 N
. Accelerate and reduce CPU utilization through B
improved NIC offload 8 Mhece m
. Create a standards-based solution for native remote ® liwar — '!Aw‘arE ¥ 1
persistent memory support. PMEM extensions being RNIC
added to the following public standards/API: 1
. IBTA IB/RoCE wire protocol Tnitiator CR-D
IBTA verbs spec \ | Memory Y, \ e/
IETF iWARP wire protocol =

ACPI PCI Firmware Spec
OFA libibverbs & libfabric API

. OF libfabric Application Components
D OF libfabric Library Component
[:] OFA libibverbs Library Component

» High-performance standards-based solution in collaboration with network partners
* Native PMEM HW support for RNICs, CPUs, and platforms

DCG

Data Center Group ﬂil-

RPMEM 1.0 -

See backup slides for basic overview of the 2 RPMEM 1.0 solutions Intel supports

PROS of using the RPMEM 1.0 solution

« ULP SW changes only
* No wire protocol changes
* No OFA library changes
* No HW RNIC, cpu, chipset changes required

CONS of using these RPMEM 1.0 techniques

* Vendor specific implementation does not work for all platforms and does not foster industry wide acceptance
* ULP SW changes could become a defacto protocol (not ideal!)
* Appliance Method only works on Intel late model server platforms

 Initiator Node drives 2 possible flushing mechanisms
* Forces target node configuration to be understood by initiator node — Not a sustainable or scalable programming model

» Performance Impact:
» Extra messaging required to make writes durable — for some use cases
+ RPMEM 1.0 customers prefer the non-allocating write “Appliance Method” since the latency is dramatically reduced versus the DDIO “General
Purpose Server Method”
« Architectural limitations force the user/admin to place an entire PCle Root Port in to non-allocating write mode
* Requires intimate/internal knowledge of motherboard layout, add-in card strategy, etc
* Impacts write performance for all devices on the root port

» Alters the way all SW running on that node and data caching strategy
* Applications that normally see quick read performance when accessing data that was RDMA’d potentially

now will see significant latency as the first touch pulls the RDMA Write data in to LLC cache from CR DCG
Data Center Group ﬁil‘

RPMEM 2.0 -

Why we need “"RDMA extensions for PMEM"?
 Platform Performance:
« One less round trip on the wire for tail of log SQL use case (see picture on the
right)

* The Data write, its Commit, the Ordered tail pointer Write and its
Commit can all be launched by client in pipelined fashion.

* The serialization of the tail pointer write relative to the Data Commit
must still occur within the target system, but those in-system
serialization latencies are noticeably lower than the equivalent
serialization over the network.

+ Platform steering tags in combination with on the wire knowledge of RDMA
Writes to persistent memory allow specific IO to bypass LLC cache for better
efficiency
» No longer need to place entire root port in to non-allocating mode, allowing
non RPMEM users to see expected platform DDIO performance not possible
with the ULP SW solution of RPMEM 1.0
« Platform efficiency/scalability, Initiator Node SW simplicity:
« Only those applications require RPMEM need to enable it
« Initiator node connection no longer needs to understand specific setup and
configuration of each target node
» No longer need to utilize different flush semantics for different target nodes
 Flexibility for future HW and platform architectures
 Steering tags allow precise routing of network transactions to separate HW
entities

Client

Server Server

RNIC Mem.
\ Ctlr
er:e Dats
Reay
Re T~
9 (Dag,)
PCle’
Network RTT ‘R,E
Read ResP mata\
W
Re, e f.uf,.‘,____‘
adt
o {Ptr \
—_
Network RTT :@
il
pead ReSP \

INTEL RPMEM 1.0

Client

Network RT
— (pata)

Ccom® L RE S/
0 ere rr‘te“"-
4”‘_:‘

parnit ResP P
Col

Server
RNIC

\

I

~
Write
fPy,
)

Server
Mem.
Ctlr

—_
PCle’
RTT

)
NEW

INTEL RPMEM 2.0

DCG

Data Center Group ﬂil-

RPMEM 2.0 -

Legacy support only: Per PCle Root
, Port CSRs programmed to control DDIO
/' &Non-Allocating Write flows eADR Power Fail Safe Domain

IB/RoCEv2/iWARP RNIC 1] ., .
Networking wire protocol & verbs 1 .-~ ADR Domain + LLC + L1/L2

updates: 1 L7
RDMA Flush N o e o N
RDMA Atomic Write ! 1 0
— ‘ e
S N [1 X
So perfct (s 0 @l 1 L 2 H 1 8
CORE >~ TCP/IP Socket i LL |y
[ooe || "€ el N P, 1,] :
Bl O
M2M | IIOF | Root [gf RNIC § 3l Root | _TIOF{|[M2m J| C |ff v Ll
CORE Port - :.POI‘t’—' --Wrt 1 2 L1 1 O
. > - = [T
T i Cache .-____El_ ________ A
iMC ===t [MC 3
RNIC HW I i
5} Intel SPR/EAS HW ! : [gweo] 1 CPU
[CORT] PCI TLP IO Steering ; ' AJ DDRT K '
AD ;?: ?:ﬁ::.‘}%i:ﬁ'ed | : ¢ AD :-- -- ADR Power Fail Safe Domain
CR1.0 PH: CACHE/NC I 1| CR2.0 [IMC WPQ + AppDirect CR
. 1
PCU assisted ADR L ______)

Power Fail Safe Domain
ADR Domain + IIO Wrt Cache

RPMEM 2.0 Intel Eagle Stream Platform HW Architecture

DCG

Data Center Group ﬁil‘

RPMEM 2.0 -

RDMA Flush placement attributes:

-Attributes sent with the RDMA Flush command that directs the HW on how to handle the RDMA Writes and flushes to the given QP
FI_PLACEMENT_PMEM - The data being flushed it targeted at PMEM vs DDR

FI_PLACEMENT_GO - The data being flushed must be Globally Ordered (visible) before the flush command completes

RDMA Flush:
-Force flush of previous RDMA Write data utilizing placement hints to optimize how the flushing takes place
Ordering:

Behaves the same as RDMA Read

RDMA Flush shall not begin execution until all previous operation on the QP have been executed

Subsiquent RDMA Write & RDMA Atomics may bypass RDMA Flush

RDMA Atomic Write may not bypass RDMA Flush

RDMA Atomic Write:
-8 Byte pointer update only
-Separating from RDMA Write - Allows RNIC pipelining & ordering for these updates orthogonal to RDMA Write
-Optional IMMEDIATE flag to generate target node SW interrupt
Ordering:
Wont begin execution until ALL previous received inbound requests have begun executing
Subsequent inbound RDMA Write, RDMA Send, RDMA Atomic operations can all bypass the Atomic Write
Atomic Write shall not complete in memory until all preceding operations, except RDMA Read, have been completed in memory

IEFT RDMA Write w Validate:
-End-to-end CRC generation and checking when writing directly in to PMEM.
-Important for Push model with PMEM
Ordering:
Write completion back to the initiator after CRC validation is complete

DCG

Data Center Group ﬂil-

RPMEM 2.0 -

PCI TLP Processor Hint Definition

Table 6-11: Processing Hint Mapping

* TH - indicates the presence of TLP Processing Hints (TPH) in the :i:,“m] Processing Hint Usage Model
TLP header and optlonal TPH TLP Prefix (If Present for 16-bit ST) 0o Bi-directional data structure Bi-Directional shared data structure
* PH bits are hints used by completer to optimize internal data o1 Requester oo
placement for anticipated subsequent access by device or host. 10 Target DWHR
+ Steering Tags are system-specific values that provide information HWDR
. . 1" T t with Priori S target but with 1 | Tori
about the host or cache structure in the system cache hierarchy. 2rget with Prionty ame 2s target ut with temporal re-use priorty
These values are used to associate processing elements within the Table 6-12: ST Modes of Operation
platform W|th the DTOCGSSing Of RequeStS- ST Mode Select [2:0] | ST Mode Name Description
000 No ST Mode The Function must use a value of all zeroes
for all Steering Tags.
+0 +1 +2 +3 001 Interrupt Vector Mode Each Steering Tag is selected by an
7| ﬁ|5 4|3|2| 1 |o 7 a|5 |4 alz|1]af7]e 5|4 3|2 1 |c| 7 |a |5 |4 |3|2 | 1 |D MSI/MSI-X interrupt vector number. The
. = =T Function is required to use the Steering Tag
Byte 0 [Tyee B[TC [Rjw|R J|F|F|Atr | AT Length value from an ST Table entry that can be
Byte 4 = {Fiekis in bytes 4 ugh 7 on type of indexed by a valid MSI/MSI-X interrupt vector
Sye 5 = Address(ea-32] number.
- - 010 Device Specific Mode It is recommended for the Function to use a
Bri= 12 = H i Steering Tag value from an ST Table entry,
AcoTEs but it is not required.
Figure 2-20: Location of PH[1:0] in a 4 DW Regquest Header All other encodings Reserved for future use.
+0 +1 +2 +3 DWHR: Device writes then host reads soon
T|B|5 4|3|2| ! |IJ T Ei|‘5|4 Sl il I R 5|4 3|2 ! |0 T|5|5|4|3|2|1 |0 HWDR: Device reads data that the Host is believed to have recently written
Byte 0 > [FiEme Type R| TC [RpsR ; -[II-I p| Alir | AT L= D*D*: Deevice writes/reads, then device reads/writes soon
=) —
Byted = FE = SUIE | B | e Inclndes DWDW, DWDR, DRDW, DRDR
AaTEz Bi-Directional: Data structuse that is shared and has equal read /write access by host and
Figure 2-22: Location of $T[7:0] in the Memory Write Request Header dewice.

DCG

Data Center Group ﬁil.

RPMEM 2.0 -

TLP Hints: TH [PH (ST Durable/Volatile
\olatile Memory Write (DRAM) 0 na na Global Visible Order
\olatile Write w/o caching hint 1 00/11 ['A
\olatile Memory Write NO caching |1 01 1A Global Visible Order
1
1
1

A =Value programmed
via new ACPI interfaces
10 1A or default value if one is

Persistent Write w/o caching hint 00/11 |A programmed
Persistent Write NO caching 01 A Persistent Ordered
Persistent Write w/ Caching 1 10 A

PCI TLP Processor Hint Definition

\olatile Memory Write w/ Caching

-fi_mr_reg memory registration attributes Backend RNIC Description
-RDMA Write memory registration attributes PCle Steering Tag
-RDMA Flush placement attributes output Inbound Backend RNIC
-FI_PLACEMENT_PMEM TH=1 -Access PMEM with global visibility RIEMA PCle Request
-FI_PLACEMENT_GO ST[7:0]=A Request
-PH[1:0] =10 RDMARead PCle Read
-FI_PLACEMENT_GO -TH=1 -Access DDR with global visibility RDMA Write PCle Write
-ST[7:0] = A
-PH [1:0] = 10 RDMA Flush PCle Flushing Read w
Length=0
All other combinations Target RNIC rejects -Access PMEM or DDR without global visibility . .
RDMA Flush sent with which we don’t support on Intel platforms (Intel RNIC PCle transaction handling
any unsupported platforms only support Global Ordering)
placement

RNIC PCle Steering Tag based transaction handling
DCG

Data Center Group ﬁiln

RP M E M 2 O _ sd RPMEM 2.0 - Flush ics-Region Registration)

RPMEM 2.0 - RDMA Region Registration

<INITIATOR NODE ——————————————————INITIATOR> <NETWORK > <—TARGET NODE -TARGET—>
Libfabric 0 'RNIC Libfabric
based ne based
e o river Daemon
T T

Putting it all .

T
| |

h | fi_get_info() | |

o i)

to g ether FI_PLACEMENT_PMEM, FI_PLACEMENT_GO) : fi_get_info:

|

|

s = =—=== | Add new attributes:
| . FI_PLACEMENT_PMEM -The RNIC endpoint supports
Alloc M yMappedFile(ReadBufferLength, VOLATILE) native PMEM RDMA semantics, RDMA Write to
1 Alllocate Volatile PMEM, RDMA Flush opcode, RDMA Atomic Write
ReadBufferVAddr() _: Memory from pool() opcode, new placement attributes, etc
ST l_ e | * FI_PLACEMENT_GO-The RNIC endpoint supports
| | differentiating writes to Globally Observable
memory versus bypassing cache

ﬁ_mr_reg[ReadBv:lfferVAddr, H \
ReadBufferLength, FI_PLACEMENT_GO) |

\

RegisterNiemoryRegioh : N : : : B
(ReadBufferVAddr, ReadBufferLength) | \ | | fi_mr_reg:
LTAG() | \‘ | | When registering memory support the
LTAG() SR ! "\ | | addition placement attributes:
: ! Iy) ! ! * FI_PLACEMENT_PMEM -The
| | OUT OF BAND: SSL: Allocate Remote h{lem‘ory{Wnt?BuﬁerLengthi’MEM) buffer being registerad is
]] T]] B P persistent memory
! ! ! : Y e * FI_PLACEMENT_GO-The buffer
[N | FI_PLACEMENT_PMEM, FI_PLACEMENT_GO() beingregistered is to be treated
High-level SW Implications: | | —_———> as Globally Visible memory
RMEA Memory Sitiibutes AnocazeMemor'vMappedFile'(Wri:eauﬁerLength, PMEM) s
* TheTAG handle returned from I - 3 s
fi_mr_reg has all public and vendor | Allocate AppDirect | -7 - . AN
specific bits accounted for soitis | PMEM from pool() J, RegisterPmemRegion
not easy to extend the tags to | | WriteBufferVAddr() ® The RTAG does not contain
incorporate the persistency or | —_—————— context regarding the naw
observability of a memory range | | b placement attributes
. Initiator RDMA Application must fi_mr_reg{WriteBufferVAddr, WriteBufferLength, . The Target RNIC kernel driver /
keep track of the Global FI_?LACEMENT_?MEM | FI_PEA(EMEMT_GOD RNIC HW must keep track of the
0Ol ility vs i for RegisterMemoryRegion additional placement attributes
each local and remote buffer (WriteBufferVAddr, WriteBufferLength) associated with the returned
allocated by sharingpersistent | = 6A———78—H @ ____- - RTAG.
memeory buffer metadata usingan Regi Py Regi: . Avendor specific NIC mechanism
out-of-band mechanizm - = =I(WriteBufferVAddr, RTAG, is required to link the RTAG that
T T T Placement Bits) results from the PMEM buffer
| | | | RT;S() registration with the placement
: : : ____:__ e R;G) bits & fact that the region is
RTAG() | | | | persistent memory.
——————— F————t-—-—————-—_—- - —————t ———— == —————
| | | | | | U

s RPMEM 2.0 - Flush Semantics - Write & Flush /

R P M E M 2 O — RPMEM 2.0 - RDMA Write & Flush Semantics

TT NODE- ARGIT—>

BOED 5 CEmE

|
1 T_writa(LKEY [initiator volatila mamary sourcal, RKEY |
[tarzet persistent memory sink), offset. lenzth)

ROMAWrite Add ROMA Write WOE to SQILKEY, RKEY, offset, lenzth)
L L ol

Putting it all Together: vrced

RN ———d e e e
' PClaRead() ! H
RDMA Flush: WU—‘%I? ROMAWr01 o) |
RKEY, - 2 a ::«::“ ?'\:(.)mm’ o ulmrmlnln write iz
Starting VA, | RNIC uses RTAG to retrieve intermally
Starting Length, 5 e s it

Placement Attribute: GO | PMEM

alt ALTERNATE: FI_PLACEMENT_PMEM & FI_PLACEMENT_GO: RDMA Write to PMEM w Gobal Observability /

PCle Posted Writa(lengeh, offsat, THe1 (Stearing
Tags Cnlbled) ST=PMEM Toz, Pﬁ:io (CACHED))

T
|

) M2M Write() H

: D DDRTWrita()
I)

[[

-VA buffer range specified by the flush must lie within one of the pre-
registered target RNIC memory ranges

-The flush domain will cover all writes to the same RKEY wholly [ACTERATE: P_piACEMENT) s T VS P

contained within the specific buffer range of the flush command m’ra.cvuAurmocmmwwlunouuyp‘onvmmpixemnxmmsc \j msmm-a»sr-msmm;;:::vri:;‘cnm»

-The Target RNIC will check the RTAG registered memory range against placement and the inte! Target RNIC would reject such ROMA Flush command :

the range specified in the RDMA Write or Flush & errors will be treated E El i i T i e E

as a connection error SEROVAFLUSHTOPMEM) ! : | i i i i

-The Target RNIC will send a PCle Flushing Read with length O to force b s T e i (O PLi‘cmm s E E E E

the read after write ordering semantics & flush behavior without the AN e '=_U At i :

performance penalty of a data transfer etD T MDA T O oo il g 1 !

-The Target RNIC chases all the writes that are in range and insures they e i ! ; : :z.&,a..mém.‘.mm:“m. isto

are flushed to the destination media E ({Jﬁfﬂc””’ FOMAFlush plecement aitributes
Alt ALTERNATE: FI_PLACEMENT_PMEM & FI_PL ¢ = ; : / {

T T TT T T '
|PCla Flushing Raad(langth =0, offset, TH=1 (Stearing Tags Enabiad), ST=PMEM Tag, PH=10 (CACHED))

| ' |
1 CLFLUSHOPT LOOF or CLWB()
h g |
' < v '
T T I

o T 0
I altAL FLPL S Write 1o PMEM o0 fuzhing offzat, TH=1
ﬁ Tags Enabled), ST-PMEM Tag, PH=01 (UNCACHED))
1} '

lacement and the inte! Target RNIC wouid reject such RDMA Flush command] |

INTEL CPU Architecturm would not support PMEM placsment without GO
Pl

T
alt FI_PLACEMENT_S mmnn PM GO: wm.—mwmmmmml‘)
1

NOOP: RDOMA Writes to PMEM with Intel platform eADR enabied (as determined by
ACPI Platform Capability bits) 06 not require back-end Mushes to be sent by the NIC.

)

i

i

|
S
=
=

0
RDMA Flush
compiation '

callbsck() ROMA Flush Rezponse WQE() .?d——‘ :::::D::‘»:: '&ﬁ; tacqf)
d<€--—-- S SHEEET !

|

|
|
1
1
1
1
1
1
1
\
1
1
|
1

RPMEM 2.0 -

class RPMEM 2.0 Domain Model /
PO ‘\I RPMEM 2.0 in Model SW C
i ! (O modified ReMEM 2.0 PMDK SW components
, i (] Moaified Remen 2.0 074 sw components
. . | 1
! H O RPMEM 2.05W C
PUttl ng It a“ ! : remem_credte () unmodifies RPMEM 2.0 08 kernel SW components
together : bl (D) Mosifiea Remem2 00 kemet component ___| __________________ .
I : rpmern ;,c'i st :
: | rpmem_nppersist |
| : :
1 | |
| ' !
1 1
1 1
1 1
1 1
1 1
! |
: | fi_endpoint N :
) 1 | _bind x !
Intel - PMDK \\pmem.io | | | fi_enable |
———————————————— [| fi_endpoint '
N A N | fimr_reg . !
R e |
| I H |
| | H |
| i H 1
i se - i
’ | H 1
| | | ’
| i H
| | | fi_flush
If B | - | i, fi_atomic_write
L
. . ! |
OFA - libfabric _ ___ b
|
. |
- ! 1
OFA - libibverbs RD I
________________ A |
1
RDMA Write | __.{News, RoCE, IWARP
RDMA Atomk.inle - -:' == wire protocol API
ACPI 6.4 Steering Tag API Pk e !
Intel HW Design Guide for NIC vendors

RPMEM 2.0 SOFTWARE ARCHITECTURE DCG
Data Center Group

(intel“) Look Insider

RPMEM 1.0 Backup Material

SW mechanisms to utilize PMEM on Intel Purley platforms

DCG
Data Center Group m
||

RPMEM 1.0 -

; DDIO Writes
Per PCle Root Port CSRs programmed to - '.'
CORE control DDIO & Non-Allocating Write flows ~~- % !) 1 w
'l L 2 | — 8
[core _, TCP/IP Socket i h =
T‘ LLC PCI [, T iwarp X | PCI “ €
M2M IIOF Root [§ RNIC§ 1B . RNIC [2] Root IIOF M2M || C || v (L :-'c;
CORE Port of—ROCEVZ__ |5 Port |r—wse S i E
i[L_Cache L-}-----]B
iMC L————r———-:— iMC\\ i
I [vozom| | CPU
T U r
CélD.O i i <c>§1D.o E *\ Non-allocating Writes
PCU assisted ADR L=mmmmee== === ADR Power Fai
Power Fail Safe Domain Safe Domain

ADR Domain + IIO Wrt Cache

RPMEM 1.0 Intel Purley Platform HW Architecture

DCG
Data Center Group ﬁiln

RPMEM 1.0 -

« ADRDomain, No DDIO

. “Appliance Method" ADR Domain
* Enable “non-allocating Write” transactions per Root i NVM !
PCl Port OR use PCle “no snoop” bit in the PCI ; _? ? :
Transaction Header for a specific RNIC i [iMC !
« Requires BIOS Enabling A I I ' CPU
* Forces RDMA Write data directly to iMC 110 L CORE
* Enable on PClI Root Port with RNIC or specific RNIC | Internal BUFEERS | L CORE
* Follow RDMA Write(s) with RDMA Read to force — C CORE
.. . . Non-Allocating Write
remaining 110 buffer write data to ADR Domain Transactions T CORE
* RDMA Read acts as a fencing function for the y
previous non-allocating writge data and forces PCI Root Port
remaining write data out of the pipeline T
* Must force a PCl Read on the local PCI Root Port |
that handled the writes RNIC € RNIC RDMA Write Flow
* Since RDMA Write and Read are silent, there is little RNIC RDMA Read Flow
or no change to the SW on the node supplying the €= RDMA Write Data forced to ADR
Sink buffers for RDMA Write Domain by RDMA Read Flow

. RDMA Read - Read can be for any address, length <€=P> Write Data forced to persistence by ADR Flow

DCG

Data Center Group ﬂiln

sd RDMA with PM - Purley - Appli D ility M i /

Client Client SW| Client HW Server HW [Server HW [Server HW [Server
App VERBs RNIC RNIC PCl Root 1o iMC NVDIMM
Port Ci

T T T T

RPMEM 1.0 -

T T
ol 5 | I L
J— 2::3;:&:2&’2?@\(, : : Non-Allocating Write Color Key
= offset, length) ! ! s S e [[] roma client sw Applicstion
b ADR Domal n' No DDIO ibv_pcst_lsend : xuchv{lrft:zomesthrough D RDMA Server SW Application
(QP. RDMA SQ) ::dg (;\{)QE :'hren'"g. ;'nﬁt ;:;;C:‘ *:; bt;e [] A0R Hw Domein
L] ' ADR Domain (iMC).
« "“Appliance Method” P | ! !
_ _ RDMA WRITES == f<-—- . | owwmeer s M e i
* See Sequence Diagram at Right W NON | | = e R T
for example flow ALLOCATING ! L e 4>D_'[j—>c: !
WRITE I l I | l l I |
TRANSACTION — AR I S T 2 fobave ied) /| ; L :
S Build ROMA Read | I | | | l |
Request{LKEY, RKEY, | | | | | | |
J— offset, Ilength) : : | | l ' :
E']‘—_] ibv_post_send I RNIC issues PCl Flushing Read to force remaining !
(QP. RDMA SQ) Add WQE pipeline Write data it in to the IMC (ADR Domain) of :
to SQ{) the Server node. |
| —— et i R i
NEW ADDITION: Wit for Resa Compietion L ! L ! ! !
RDMA READ TO evenieepal) : : RDMA Read(LKEY, : : Force any :
FORCE= | ke o gy
REMAINING | | — : [Jd() :
WRITE DATA IN I | Ceisa _’ﬂ T |
I | saeptmrEonE e l=-—q = - |
TO THE ADR | | g ' =1 ' |
DOMAIN . . ! . . . !
Read Completion() (I | | | | |
| e T AN T O R
- | o N
NEW ADDITION: RELY ON | ; | ! | [FROR Power Loss Event - WeG Fivsh

ADR LOGIC TO MAKE — : : : | ! ! | DDRT Wite

WRITE DATA IN THE ADR | ! | ! 1. [g 4
DOMAIN DURABLE ON I ; I ; ; ; "

-———— POWERFAL

RPMEM 1.0 -

* No ADR Domain, With DDIO
(Platform Default configuration)

NVM
» ‘“General Purpose Server Method” L
* Use standard “allocating Write" transactions for | IMC | CPU
Root PCI Port to IIO f
. . . 110 CORE
* Follow RDMA Write(s) with Send/Receive to get =P L
[Internal BUFFERs | [~ L [|-CORE
server RDMA SW callback nterna c CORE
* Send/Receive will contain list of cache lines that Al B T CORE
Transactions
were written (or write addresses/lengths) 1
- ISA - CLFLUSHOPT/SFENCE - Flush CPU cache PCI Root Port
lines and wait for flush to complete (invalidates T
cache contents). The list of cache lines from the | =P RNIC RDMA Write Flow
Send message is used to identify the cache lines RNIC RNIC RDMA Send/Receive Flow
that need to be flushed. _) <@=) RDMA Write Data forced to iMC by
* Rely on ADR logic to make write data in the ADR Send/Receive Flow
Domain durable on a power loss > gﬁgﬁ@icg:;/?/g?gﬁi‘:%kﬂ
* Internal IO buffers will be flushed as part of ADR . o
logic allowing “allocating writes” to be used. > ADR Logic flow
DCG

Data Center Group ﬂilﬂ

=d RDMA with PM - Puriey - General Server Durability l‘eolumsm/

| al M EM 1 .O Client W] [Clien: Client W/ [Fener bl [cever] [Server] [Bever il [Se Server] [servec S| [Gerver 5]
VERB: PCI Root 1o e VERSs Acp
Port Controlled
I 1
| 1

p— Build RDMA Write
ReGUestLKEY, RKEY,
offsst. length)

Color Key
] roma client sw apsiication
Create Cazneline (] Roma server SW Asplication

] #or = pemain

hd NO ADR Domain’ With RDMA e RD\IAwmeL!KEV ’”c: ""W:’i"ﬂ mm‘mm

WRITES
DDIO W STANDARD - B
ALLOCATING | | 1 77777 . boic'omag

T

i

]

}

|

I}

|

|

i

I

}

|

|

I

|

|

|

I

}

1 i
| i
1 }
! }
! I
+ + i
I oo i
\ | jeloiel .NlN) |
|

)] |
| |
T T
! !
T T
I |
| i
| i
| i
I

I

|

}

}

I

I

|

|

|

I

i

|

}

}

Posad Wiite |

I

i

|

|

|
RKEY. oftet, length) 050 o !
i
'
|
I
|

1

|

1

|

|

to 11 !

| 1
|

|

+ “General Purpose WRITE L
Server Method” TRANSACTIO S —— E
NS T ! ! ! ! !
* See Sequence Diagram at Right —_ | | | : : :
for example flow (o8 pon sy 15 | %@Ei@:gmﬁ"gﬁﬁtmw
1 ‘written to the NVDIMM durability domain in the event of 3

| ' Foros sny
RDMA Send(Cachline Flush List)

NEW ADDITION:

I
|
|
|
}
|
I
|
]
]
I
I
I
]
I
I
|
|
|
|
|
I
]
|
|
I
I
|
|
I
I
I
I
|
I
|
|
I
I
}
]
]
|
I
|
I
I
|
|
I
|
I
I
|

' !
| e

' |

' |

| |

' | remaining Writa
' |

' '

' |

' |

L '

i £C1 Flushing Reac() Datainto LLEY) !
RDMA SEND/RECEIVE | <o .=
CALLBACK TO i o om0 S B et - SR |
[~ | | 1009 thru all cache line fisted in ROMA Send
FORCE DATAINTO | A T =
IMC ADR DOMAIN i A . U
=23 IR N N R R R
NEW ADDITION: RELY ON P e I T
ADRLOGICTOMAKE || ™ | 1 .
WRITEDATAINTHEADR [| T ¢ = 7

DDRT Wrize()

DORT Write()

e e Z
1
']

DOMAIN DURABLE ON _d
POWER FAIL |

