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Changes 

• v2 

– Remove interface object 

– Add open interface as base object 

– Add SRQ object 

– Add EQ group object 

• v3 

– Modified SRQ 

– Enhanced architecture semantics  
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Overview 

• Object Model 

– Do we have the right type of objects defines? 

– Do we have the correct object relationships? 

• Interface Synopsis 

– High-level description of object operations 

– Is functionality missing? 

– Are interfaces associated with the right object? 

• Architectural Semantics 

– Do the semantics match well with the apps? 

– What semantics are missing? 
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Object “Class” Model 

• Objects represent collection of attributes and 

interfaces 

– I.e. object-oriented programming model 

• Consider architectural model only at this point 
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Objects do not necessarily map directly 
to hardware or software objects 



Conceptual Object Hierarchy 
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Object Relationships 
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Fabric 

• Represents a communication 

domain or boundary 

– Single IB or RoCE subnet, IP 

(iWarp) network, Ethernet subnet 

• Multiple local NICs / ports 

• Topology data, network time 

stamps 

• Determines native addressing 

– Mapped addressing possible 

– GID/LID versus IP 
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Passive (Fabric) EP 

• Listening endpoint 

– Connection-oriented protocols 

• Wildcard listen across 

multiple NICs / ports 

• Bind to address to restrict 

listen 

– Listen may migrate with 

address 
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Fabric EQ 

• Associated with passive 

endpoint(s) 

• Reports connection requests 

• Could be used to report fabric 

events 
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Resource Domain 

• Boundary for resource 

sharing 

– Physical or logical NIC 

– Command queue 

• Container for data transfer 

resources 

• A provider may define 

multiple domains for a single 

NIC 

– Dependent on resource sharing 
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Domain Address Vectors 

• Maintains list of remote 

endpoint addresses 

– Map – native addressing 

– Index – ‘rank’-based addressing 

• Resolves higher-level 

addresses into fabric addresses 

– Native addressing abstracted 

from user 

• Handles address and route 

changes 
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Domain Endpoints 

• Data transfer portal 

– Send / receive queues 

– Command queues 

– Ring buffers 

– Buffer dispatching 

• Multiple types defined 

– Connection-oriented / 

connectionless 

– Reliable / unreliable 

– Message / stream 
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Domain Event Queues 

• Reports asynchronous events 

• Unexpected errors reported 

‘out of band’ 

• Events separated into ‘EQ 

domains’ 

– CM, AV, completions 

– 1 EQ domain per EQ 

– Future support for merged EQ 

domains 
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EQ Groups 

• Collection of EQs 

• Conceptually shares same 

wait object 

• Grouping for progress and 

wait operations 
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Domain Counters 

• Provides a count of successful 

completions of asynchronous 

operations 

– Conceptual HW counter 

• Count is independent from an 

actual event reported to the 

user through an EQ 
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Domain Memory Regions 

• Memory ranges accessible by 

fabric resources 

– Local and/or remote access 

• Defines permissions for 

remote access 
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Interface Synopsis 

• Operations associated with identified ‘classes’ 

• General functionality, versus detailed methods 

– The full set of methods are not defined here 

– Detailed behavior (e.g. blocking) is not defined 

• Identify missing and unneeded functionality 

– Mapping of functionality to objects 
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Use timeboxing to limit scope of 
interfaces to refine by a target date 
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Base Class 

Close Destroy / free object 

Bind Create an association between two object 
instances 

Sync Fencing operation that completes only after 
previously issued asynchronous operations 
have completed 

Control (~fcntl) set/get low-level object behavior 

I/F Open Open provider extended interfaces 



www.openfabrics.org 19 

Fabric 

Domain Open a resource domain 

Endpoint Create a listening EP for connection-oriented 
protocols 

EQ Open Open an event queue for listening EP or 
reporting fabric events 
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Resource Domain 

Query Obtain domain specific attributes 

Open AV, 
EQ, EP, 
SRQ, EQ 
Group 

Create an address vector, event or completion 
counter, event queue, endpoint, shared 
receive queue, or EQ group 

MR Ops Register data buffers for access by fabric 
resources 
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Address Vector 

Insert Insert one or more addresses into the vector 

Remove Remote one or more addresses from the 
vector 

Lookup Return a stored address 

Straddr Convert an address into a printable string 
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Base EP 

Enable Enables an active EP for data transfers 

Cancel Cancel a pending asynchronous operation 

Getopt (~getsockopt) get protocol specific EP options 

Setopt (~setsockopt) set protocol specific EP options 
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Passive EP 

Getname (~getsockname) return EP address 

Listen Start listening for connection requests 

Reject Reject a connection request 
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Active EP 

CM Connection establishment ops, usable by 
connection-oriented and connectionless 
endpoints 

MSG 2-sided message queue ops, to send and 
receive messages 

RMA 1-sided RDMA read and write ops 

Tagged 2-sided matched message ops, to send and 
receive messages (conceptual merge of 
messages and RMA writes) 

Atomic 1-sided atomic ops 

Triggered Deferred operations initiated on a condition 
being met 
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Event Queue 

Read Retrieve a completion event, and optional 
source endpoint address data for received 
data transfers 

Read Err Retrieve event data about an operation that 
completed with an unexpected error 

Write Insert an event into the queue 

Reset Directs the EQ to signal its wait object when a 
specified condition is met 

Strerror Converts error data associated with a 
completion into a printable string 
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EQ Group 

Poll Check EQs for events 

Wait Wait for an event on the EQ group 
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Completion Counter 

Read Retrieve a counter’s value 

Add Increment a counter 

Set Set / clear a counter’s value 

Wait Wait until a counter reaches a desired 
threshold 
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Memory Region 

Desc (~lkey) Optional local memory descriptor 
associated with a data buffer 

Key (~rkey) Protection key against access from 
remote data transfers 



Architectural Semantics 

• Progress 

• Ordering - completions and data delivery 

• Multi-threading and locking model 

• Buffering 

• Function signatures and semantics 
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Once defined, object and interface semantics 
cannot change – semantic changes require new 

objects and interfaces 

Need refining 



Progress 

• Ability of the underlying implementation to 

complete processing of an asynchronous 

request 

• Need to consider ALL asynchronous requests 

– Connections, address resolution, data transfers, 

event processing, completions, etc. 

• HW/SW mix 
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All(?) current solutions require 
significant software components 



Progress 

• Support two progress models 

– Automatic and implicit 

• Separate operations as belonging to one of two 

progress domains 

– Data or control 

– Report progress model for each domain 
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SAMPLE Implicit Automatic 

Data Software Hardware offload 

Control Software Kernel services 



Automatic Progress 

• Implies hardware offload model 

– Or standard kernel services / threads for control 

operations 

• Once an operation is initiated, it will complete 

without further user intervention or calls into the 

API 

• Automatic progress meets implicit model by 

definition 
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Implicit Progress 

• Implies significant software component 

• Occurs when reading or waiting on EQ(s) 

• Application can use separate EQs for control 

and data 

• Progress limited to objects associated with 

selected EQ(s) 

• App can request automatic progress 

– E.g. app wants to wait on native wait object 

– Implies provider allocated threading 
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Ordering 

• Applies to a single initiator endpoint performing 

data transfers to one target endpoint over the 

same data flow 

– Data flow may be a conceptual QoS level or path 

through the network 

• Separate ordering domains 

– Completions, message, data 

• Fenced ordering may be obtained using fi_sync 

operation 
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Completion Ordering 

• Order in which operation completions are 

reported relative to their submission 

• Unordered or ordered 

– No defined requirement for ordered completions 

• Default: unordered 
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Message Ordering 

• Order in which message (transport) headers are 
processed 
– I.e. whether transport message are received in or out 

of order  

• Determined by selection of ordering bits 
– [Read | Write | Send]   After   [Read | Write | Send] 

– RAR, RAW, RAS, WAR, WAW, WAS, SAR, SAW, SAS 

• Example: 
– fi_order = 0  // unordered 

– fi_order = RAR | RAW | RAS | WAW | WAS | 
       SAW | SAS     // IB/iWarp ordering 
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Data Ordering 

• Delivery order of transport data into target 

memory 

– Ordering per byte-addressable location 

– I.e. access to the same byte in memory 

• Ordering constrained by message ordering rules 

– Must at least have message ordering first 
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Data Ordering 

• Ordering limited to message order size 

– E.g. MTU 

– In order data delivery if transfer <= message order size 

• Message order size = 0 

– No data ordering 

• Message order size = -1 

– All data ordered 
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Other Ordering Rules 

• Ordering to different target endpoints not defined 

• Per message ordering semantics implemented 

using different data flows 

– Data flows may be less flexible,  but easier to 

optimize for 

– Endpoint aliases may be configured to use different 

data flows 
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Multi-threading and Locking 

• Support both thread safe and lockless models 

– Compile time and run time support 

– Run-time limited to compiled support 

• Lockless (based on MPI model) 

– Single – single-threaded app 

– Funneled – only 1 thread calls into interfaces 

– Serialized – only 1 thread at a time calls into interfaces 

• Thread safe 

– Multiple – multi-threaded app, with no restrictions 
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Buffering 

• Support both application and network buffering 

– Zero-copy for high-performance 

– Network buffering for ease of use 

• Buffering in local memory or NIC 

– In some case, buffered transfers may be higher-

performing (e.g. “inline”) 

• Registration option for local NIC access 

– Migration to fabric managed registration 

• Required registration for remote access 

– Specify permissions 
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