
Fabric Interfaces

Architecture

Sean Hefty - Intel Corporation

Changes

• v2

– Remove interface object

– Add open interface as base object

– Add SRQ object

– Add EQ group object

• v3

– Modified SRQ

– Enhanced architecture semantics

www.openfabrics.org 2

Overview

• Object Model

– Do we have the right type of objects defines?

– Do we have the correct object relationships?

• Interface Synopsis

– High-level description of object operations

– Is functionality missing?

– Are interfaces associated with the right object?

• Architectural Semantics

– Do the semantics match well with the apps?

– What semantics are missing?

www.openfabrics.org 3

Object “Class” Model

• Objects represent collection of attributes and

interfaces

– I.e. object-oriented programming model

• Consider architectural model only at this point

www.openfabrics.org 4

Objects do not necessarily map directly
to hardware or software objects

Conceptual Object Hierarchy

www.openfabrics.org 5

Fa
b

ri
c

D
es

cr
ip

to
r

Fabric

Domain

Address Vector
Map

Index

Endpoint

Msg
Passive

Active
Datagram

RDM

Dispatcher

Event Queue

Completion

CM

AV

Domain
EQ Group

Counter

Memory Region

Interfaces

Object
“inheritance”

Object Relationships

www.openfabrics.org 6

Fa
b

ri
c

Passive EP

EQ CM

Domain

AV
Map

Index

Active EP

Msg

Datagram

RDM

Dispatch EP
EQ Group

EQ

CQ

CM

AV

Domain
Counter

MR

Object “scope”

Fabric

• Represents a communication

domain or boundary

– Single IB or RoCE subnet, IP

(iWarp) network, Ethernet subnet

• Multiple local NICs / ports

• Topology data, network time

stamps

• Determines native addressing

– Mapped addressing possible

– GID/LID versus IP

www.openfabrics.org 7

Fa
b

ri
c

Passive EP

EQ

Domain

Passive (Fabric) EP

• Listening endpoint

– Connection-oriented protocols

• Wildcard listen across

multiple NICs / ports

• Bind to address to restrict

listen

– Listen may migrate with

address

www.openfabrics.org 8

Fa
b

ri
c

Passive EP

EQ

Domain

Fabric EQ

• Associated with passive

endpoint(s)

• Reports connection requests

• Could be used to report fabric

events

www.openfabrics.org 9

Fa
b

ri
c

Passive EP

EQ

Domain

Resource Domain

• Boundary for resource

sharing

– Physical or logical NIC

– Command queue

• Container for data transfer

resources

• A provider may define

multiple domains for a single

NIC

– Dependent on resource sharing

www.openfabrics.org 10

Fa
b

ri
c

Passive EP

EQ

Domain

Domain Address Vectors

• Maintains list of remote

endpoint addresses

– Map – native addressing

– Index – ‘rank’-based addressing

• Resolves higher-level

addresses into fabric addresses

– Native addressing abstracted

from user

• Handles address and route

changes

www.openfabrics.org 11

D
o

m
ai

n

AV

Active EP

EQ

EQ Group

Counter

MR

Domain Endpoints

• Data transfer portal

– Send / receive queues

– Command queues

– Ring buffers

– Buffer dispatching

• Multiple types defined

– Connection-oriented /

connectionless

– Reliable / unreliable

– Message / stream

www.openfabrics.org 12

D
o

m
ai

n

AV

Active EP

EQ

EQ Group

Counter

MR

Domain Event Queues

• Reports asynchronous events

• Unexpected errors reported

‘out of band’

• Events separated into ‘EQ

domains’

– CM, AV, completions

– 1 EQ domain per EQ

– Future support for merged EQ

domains

www.openfabrics.org 13

D
o

m
ai

n

AV

Active EP

EQ

EQ Group

Counter

MR

EQ Groups

• Collection of EQs

• Conceptually shares same

wait object

• Grouping for progress and

wait operations

www.openfabrics.org 14

D
o

m
ai

n

AV

Active EP

EQ

EQ Group

Counter

MR

Domain Counters

• Provides a count of successful

completions of asynchronous

operations

– Conceptual HW counter

• Count is independent from an

actual event reported to the

user through an EQ

www.openfabrics.org 15

D
o

m
ai

n

AV

Active EP

EQ

EQ Group

Counter

MR

Domain Memory Regions

• Memory ranges accessible by

fabric resources

– Local and/or remote access

• Defines permissions for

remote access

www.openfabrics.org 16

D
o

m
ai

n

AV

Active EP

EQ

EQ Group

Counter

MR

Interface Synopsis

• Operations associated with identified ‘classes’

• General functionality, versus detailed methods

– The full set of methods are not defined here

– Detailed behavior (e.g. blocking) is not defined

• Identify missing and unneeded functionality

– Mapping of functionality to objects

www.openfabrics.org 17

Use timeboxing to limit scope of
interfaces to refine by a target date

www.openfabrics.org 18

Base Class

Close Destroy / free object

Bind Create an association between two object
instances

Sync Fencing operation that completes only after
previously issued asynchronous operations
have completed

Control (~fcntl) set/get low-level object behavior

I/F Open Open provider extended interfaces

www.openfabrics.org 19

Fabric

Domain Open a resource domain

Endpoint Create a listening EP for connection-oriented
protocols

EQ Open Open an event queue for listening EP or
reporting fabric events

www.openfabrics.org 20

Resource Domain

Query Obtain domain specific attributes

Open AV,
EQ, EP,
SRQ, EQ
Group

Create an address vector, event or completion
counter, event queue, endpoint, shared
receive queue, or EQ group

MR Ops Register data buffers for access by fabric
resources

www.openfabrics.org 21

Address Vector

Insert Insert one or more addresses into the vector

Remove Remote one or more addresses from the
vector

Lookup Return a stored address

Straddr Convert an address into a printable string

www.openfabrics.org 22

Base EP

Enable Enables an active EP for data transfers

Cancel Cancel a pending asynchronous operation

Getopt (~getsockopt) get protocol specific EP options

Setopt (~setsockopt) set protocol specific EP options

www.openfabrics.org 23

Passive EP

Getname (~getsockname) return EP address

Listen Start listening for connection requests

Reject Reject a connection request

www.openfabrics.org 24

Active EP

CM Connection establishment ops, usable by
connection-oriented and connectionless
endpoints

MSG 2-sided message queue ops, to send and
receive messages

RMA 1-sided RDMA read and write ops

Tagged 2-sided matched message ops, to send and
receive messages (conceptual merge of
messages and RMA writes)

Atomic 1-sided atomic ops

Triggered Deferred operations initiated on a condition
being met

www.openfabrics.org 25

Event Queue

Read Retrieve a completion event, and optional
source endpoint address data for received
data transfers

Read Err Retrieve event data about an operation that
completed with an unexpected error

Write Insert an event into the queue

Reset Directs the EQ to signal its wait object when a
specified condition is met

Strerror Converts error data associated with a
completion into a printable string

www.openfabrics.org 26

EQ Group

Poll Check EQs for events

Wait Wait for an event on the EQ group

www.openfabrics.org 27

Completion Counter

Read Retrieve a counter’s value

Add Increment a counter

Set Set / clear a counter’s value

Wait Wait until a counter reaches a desired
threshold

www.openfabrics.org 28

Memory Region

Desc (~lkey) Optional local memory descriptor
associated with a data buffer

Key (~rkey) Protection key against access from
remote data transfers

Architectural Semantics

• Progress

• Ordering - completions and data delivery

• Multi-threading and locking model

• Buffering

• Function signatures and semantics

www.openfabrics.org 29

Once defined, object and interface semantics
cannot change – semantic changes require new

objects and interfaces

Need refining

Progress

• Ability of the underlying implementation to

complete processing of an asynchronous

request

• Need to consider ALL asynchronous requests

– Connections, address resolution, data transfers,

event processing, completions, etc.

• HW/SW mix

www.openfabrics.org 30

All(?) current solutions require
significant software components

Progress

• Support two progress models

– Automatic and implicit

• Separate operations as belonging to one of two

progress domains

– Data or control

– Report progress model for each domain

www.openfabrics.org 31

SAMPLE Implicit Automatic

Data Software Hardware offload

Control Software Kernel services

Automatic Progress

• Implies hardware offload model

– Or standard kernel services / threads for control

operations

• Once an operation is initiated, it will complete

without further user intervention or calls into the

API

• Automatic progress meets implicit model by

definition

www.openfabrics.org 32

Implicit Progress

• Implies significant software component

• Occurs when reading or waiting on EQ(s)

• Application can use separate EQs for control

and data

• Progress limited to objects associated with

selected EQ(s)

• App can request automatic progress

– E.g. app wants to wait on native wait object

– Implies provider allocated threading

www.openfabrics.org 33

Ordering

• Applies to a single initiator endpoint performing

data transfers to one target endpoint over the

same data flow

– Data flow may be a conceptual QoS level or path

through the network

• Separate ordering domains

– Completions, message, data

• Fenced ordering may be obtained using fi_sync

operation

www.openfabrics.org 34

Completion Ordering

• Order in which operation completions are

reported relative to their submission

• Unordered or ordered

– No defined requirement for ordered completions

• Default: unordered

www.openfabrics.org 35

Message Ordering

• Order in which message (transport) headers are
processed
– I.e. whether transport message are received in or out

of order

• Determined by selection of ordering bits
– [Read | Write | Send] After [Read | Write | Send]

– RAR, RAW, RAS, WAR, WAW, WAS, SAR, SAW, SAS

• Example:
– fi_order = 0 // unordered

– fi_order = RAR | RAW | RAS | WAW | WAS |
 SAW | SAS // IB/iWarp ordering

www.openfabrics.org 36

Data Ordering

• Delivery order of transport data into target

memory

– Ordering per byte-addressable location

– I.e. access to the same byte in memory

• Ordering constrained by message ordering rules

– Must at least have message ordering first

www.openfabrics.org 37

Data Ordering

• Ordering limited to message order size

– E.g. MTU

– In order data delivery if transfer <= message order size

• Message order size = 0

– No data ordering

• Message order size = -1

– All data ordered

www.openfabrics.org 38

Other Ordering Rules

• Ordering to different target endpoints not defined

• Per message ordering semantics implemented

using different data flows

– Data flows may be less flexible, but easier to

optimize for

– Endpoint aliases may be configured to use different

data flows

www.openfabrics.org 39

Multi-threading and Locking

• Support both thread safe and lockless models

– Compile time and run time support

– Run-time limited to compiled support

• Lockless (based on MPI model)

– Single – single-threaded app

– Funneled – only 1 thread calls into interfaces

– Serialized – only 1 thread at a time calls into interfaces

• Thread safe

– Multiple – multi-threaded app, with no restrictions

www.openfabrics.org 40

Buffering

• Support both application and network buffering

– Zero-copy for high-performance

– Network buffering for ease of use

• Buffering in local memory or NIC

– In some case, buffered transfers may be higher-

performing (e.g. “inline”)

• Registration option for local NIC access

– Migration to fabric managed registration

• Required registration for remote access

– Specify permissions

www.openfabrics.org 41

