
Jörn Schumacher, CERN
Jorn.Schumacher@cern.ch

NetIO and LibFabric

The ATLAS Experiment Particle colliders used in HEP study
physics processes on a microscopic scale

Large Hadron Collider (LHC)
27km circular collider in Geneva, Switzerland

2

Length (m) 46
Diameter (m) 25
Weight (t) 7000
Number of electronic channels 100·106

60 TB/s

2 GB/s

Data Filtering:
Order of
10000x reduction
in real-time

Custom electronics and
a server farm with 40,000 cores

Need High Performance
Networks to move data at high
rates under real-time conditions

Data Acquisition

3

Needle in a haystack: Looking for
extremely rare events with a
probability of 10-13

High-Level Trigger

Readout SystemReadout SystemProcessing Unit Data
Collection
Network

DAQTrigger

ROD ROD ROD

FE FE FE

Muon Calo Track

Level 1 Trigger

Custom Hardware

Readout SystemReadout SystemReadout System

Readout SystemData Logger

CERN Permanent
Storage

~100
nodes

6

~40000 cores

ROI
fragments

Full events

100
kHz
<2.5 µs

~2 GB/s

100 kHz
~160GB/s

L1 Accept

L1 Results,
ROI
Information

ATLAS
Data
Acquisition
2017

40 MHz

4

underground

underground

surface

surface

In total 10,000s of distributed
applications are running on the ATLAS
DAQ system

Not displayed: Monitoring,
Infrastructure, Calibration systems

60 TB/s

Requirement for Network API

• High Throughput (ATLAS Data Acquisition system has to transport
more than100 GB/s)

• Low Latency connections for detector control and calibration
applications

• High level communication patterns like client/server and
publish/subscribe

• Technology agnostic

5

Via libfabric

Infiniband API Performance

Benchmark on
56G Infiniband FDR

Data-transfer between two
nodes (Intel Haswell, 8-core and
10-core systems)

Connected via a single switch

6

HPC HEP
(High Energy Physics)

Regular topology
SPMD Pattern
No Real-Time Requirements
No Failure Tolerance
Static Resource Management

Complex topology
Complex distributed system
Real-Time Requirements
Some Failure Tolerance
Dynamic Resource Management

Why not MPI?

pull

pub/sub

push

client/server
message passing

7

MPI, PGAS, … NetIO

NetIO

8

A high-level, general-purpose API for HPC networks

NetIO was designed with High Energy Physics experiments in mind, but it is not restricted
to this use case

Design Goals:
• Native support for HPC interconnects via a back-end system
• Different operation modes tuned for high-throughput communication or low-latency

communication
• High-level communication patterns including publish/subscribe

User-level sockets

Provide a simple interface for users

High-level communication patterns:
• Send/Receive
• Publish/Subscribe

Come in two flavors:
• Low-latency
• High-Throughput

Addressing based on IPv4 or IPv6

Low-Latency
• Callback-based
• No buffering

High-Throughput
• Queue-based
• Buffering

LL Send socket HT Send socket

LL Receive socket HT Receive socket

LL Subscribe socket HT Subscribe socket

Publish socket
Both high-throughput and low-latency subscribe sockets can connect

9

NetIO Architecture

10

NetIO Throughput: Push/Pull

Push/Pull benchmarks

56G FDR Infiniband
40G Ethernet
1 MB pagesize

NetIO outperforms ZeroMQ in
nearly all uses cases

Using the Infiniband mode of the
underlying hardware allows a
performance boost that we can
leverage with NetIO – without
changing our software

11

NetIO compared to other Infiniband APIs

Some room for improvement
compared to MPI and RDMA CM
benchmarks

12

LibFabric is great

• Documentation is much better than, e.g., Verbs
• Asynchronous
• File Descriptors for completion and event queues – easy integration

with epoll
• Technology agnostic

• Enables us to explore new technologies without fear of vendor lock-in
• Or even make better use of our current hardware (e.g. RoCE)

13

Some ideas from the NetIO perspective

• NetIO requires ordering of messages, i.e. Reliable Connection (RC) mode, for deserialization
• Limits choice of providers
• Might be able to work around that, but it would be nice if the providers took care of that by providing

RC
• Or a generic compatibility mode for non-RC providers. How efficient could that be implemented?

• A written performance tuning guide would be useful
• Parameter settings etc. can be difficult for non-industry experts. Would be good for us to learn about

best practices

14

Summary

High Energy Physics has different requirements than
typical HPCs applications

What we need:

APIs with high-level interfaces for datacenter-like
applications that support high-performance fabrics

-> NetIO + LibFabric

NetIO is not yet in production-ready state, but getting
there. The plan is to release NetIO as OpenSource
software ~end of 2017/beginning of 2018

15

Backup

16

Memory Management

Messages are packed into pages (buffering for higher efficiency)

Typical max. page size is 1 MB

Event loop drives a timeout to send out partial pages and avoid connection starvatation

NetIO maintains a list of pre-allocated, free pages per connection

Default: up to 256 pages per connection

Pages are recycled after having been processed (i.e. fully sent or received)

17

Low-level sockets
Uniform interface used by user-level sockets

Abstract interface that is implemented by back-ends

Pages: Buffers that contain one or multiple messages

Listen Sockets: Listen to incoming connection requests, create receive sockets

Receive Sockets: Receive pages from remote endpoints, deserialize into messages

Send Sockets: Send pages to remote endpoint.

No distinction between high-throughput and low-latency communication (this is done in the user-level
sockets)

Configuration interface to enable fine-tuning of connection parameters

18

Low
Latency
Mode

Low latency
• No thread synchronization
• No buffering, pages contain

a single message
• Skipping message queue
• Immediate handling of

messages via callbacks
• In the future: also skip page

queue

19

High
Throughput
Mode

High Throughput
• Minimal work in the event

loop so it can return to
process incoming pages

• Buffering: Multiple messages
per page

• Event-loop drives buffer
timeout to avoid connection
starvation

• Explicit user call to retrieve
messages

20

Back-ends

POSIX

Uses POSIX stream sockets (TCP), which
translates naturally into the low-level socket API

Nagle’s algorithm disabled
(buffering in user-level sockets)

Simple integration with epoll event loop

Libfabric

Uses libfabric Reliable Connection (RC)

RDM mode is not supported – ordering is
needed to ensure proper deserialization
(That means currently RDM-based libfabric
providers are not supported, for example the
PSM provider for OmniPath. OmniPath is instead
supported by the Verbs provider)
Send windows used to control data-flow for
higher throughput

Uses file descriptors for asynchronous
completion management – can be integrated
in the epoll event loop

21

NetIO Throughput: Publish/Subscribe

Publish/Subscribe benchmarks

56G FDR Infiniband
40G Ethernet
1 MB pagesize

Similar to the push/pull
benchmarks, using the Infiniband
mode of the hardware yields a
performance boost

ZeroMQ already discarded due to
limited performance

22

NetIO Latency

Point-to-Point benchmarks
No additional load on switch

56G FDR Infiniband
40G Ethernet

Latency is very similar for ZeroMQ
and NetIO.

Lower latency expected for
NetIO/Infiniband: room for
improvement

23

Arbitrary Scale

NetIO compared to other Infiniband APIs

56G Infiniband FDR

Data-transfer between two
nodes (Intel Haswell, 8-core and
10-core systems)

Connected via a single switch

NetIO performance exceeds
the performance of emulation
layers

Still some room for
improvement compared to
MPI/native APIs

24

NetIO Status & Outlook

Some performance improvements planned
• New ZeroCopy mode
• Improved queuing scheme

Status
• Small functional improvements needed
• Ongoing parameter studies
• User documentation being written
• OpenSource release planned this year
• NetIO going to be used in ATLAS data-taking beginning 2019

25

	NetIO and LibFabric�
	The ATLAS Experiment
	Data Acquisition
	Slide Number 4
	Requirement for Network API	
	Infiniband API Performance
	Slide Number 7
	NetIO
	User-level sockets
	NetIO Architecture
	NetIO Throughput: Push/Pull
	NetIO compared to other Infiniband APIs
	LibFabric is great
	Some ideas from the NetIO perspective
	Summary
	Backup
	Memory Management
	Low-level sockets
	Low�Latency�Mode
	High�Throughput�Mode
	Back-ends
	NetIO Throughput: Publish/Subscribe
	NetIO Latency
	NetIO compared to other Infiniband APIs
	NetIO Status & Outlook

