NetlO and LibFabric

Jorn Schumacher, CERN

Jorn.Schumacher@cern.ch

Jil EXFER IMENT

The ATLAS EXPe riment Particle colliders used in HEP study

physics processes on a microscopic scale

Length (m) 46
Large Hadron Collider (LHC) Diameter (m) 25
27km circular collider in Geneva, Switzerland
‘- V) & / Weight (t)
Number of electronic channels # 1

Tile calorimeters

LAr hadronic end-cap and
forward calorimeters
Pixel detector \

Toroid magnets LAY electromagnetic calorimeters
Muon chambers solenoid magnet | Transifion radiation tracker

Semiconductor tracker 2

Data Acquisition

Custom electronics and
a server farm with 40,000 cores

Data Filtering:

Order Of Need| h k: Looking f
. eedle in a haystack: Looking for
| 0000x reduction extremely rare events with a

in real-time

probability of 10-'3

Need High Performance

Networks to move data at high /

rates under real-time conditions

ATLAS Trigger **:f'f‘ 50 7a/s DAQ

et - IIE = “‘H;;{}kfﬁ% Muon Calo Track

D at a o Triggeurnderground 20 MHy gt A L LAl
<

ACq U IS Itl O n Custom Hardware }-. 100 T FE lf FE
L1 Accept T TTTTTmme-—ool
kHz g *¢ bl ¢
2 O 1 7 <2.5 Us ROD ROD ROD
L1 Results,
S 100 kHz
Information 1160GB/s
Y fe
surface
High-Level Trigger u ¥ 2.4 L2
Readout System
~40000 cores ~100
: nderground nodes
Processing Unit [« RO Data Hnaerston
I fragments Collection <
» Network
Full events

' > Data Logger

surface 6

CERN Permanent ~2 GB/s
Storage

Requirement for Network API

e High Throughput (ATLAS Data Acquisition system has to transport
more than |00 GB/s)

* Low Latency connections for detector control and calibration
applications

e High level communication patterns like client/server and
publish/subscribe

* Technology agnostic »

Infiniband APl Performance

Infiniband Throughput Comparison for various APlIs

Throughput [Gb/s]
60
__ Benchmark on
56G Infiniband FDR
50 MPI
~ Data-transfer between two
40 nodes (Intel Haswell, 8-core and
-cor m
SR . | 0-core systems)
30
Connected via a single switch
20
10 . IPolB

OpenSHMEM
1 1

\-
&Y

Message Size [Byte]

Vv > v > o N a N Nl Na
o) \')/ 4,3\' v > 09/ ’»rf/b

Why not MPI?

HPC HEP

(High Energy Physics)
MPI, PGAS,... client/server NetlO

message passing ’/ — I \

pull
pub/sub
push

Regular topology Complex topology
SPMD Pattern Complex distributed system

Real-Time Requirements
Some Failure Tolerance
Dynamic Resource Management

No Real-Time Requirements
No Failure Tolerance
Static Resource Management

A high-level, general-purpose API for HPC networks

NetlO was designed with High Energy Physics experiments in mind, but it is not restricted
to this use case

* Native support for HPC interconnects via a back-end system

» Different operation modes tuned for high-throughput communication or low-latency
communication

e High-level communication patterns including publish/subscribe

User-level sockets

Provide a simple interface for users

High-level communication patterns: Low-Latency High-Throughput
e Send/Receive Callback-based * Queue-based
* Publish/Subscribe * No buffering * Buffering

. LL Send socket HT Send socket
Come in two flavors: LL Receive socket HT Receive socket

* Low-latency
* High-Throughput LL Subscribe socket HT Subscribe socket

. Publish socket
Addressing based on IPv4 or IPv6 Both high-throughput and low-latency subscribe sockets can connect

NetlO Architecture

User-Level API LL Send LL Receive HT HT_ Publish
Send Receive

Subscribe J

e S
oy

Low-Level Sockets Listen Event Loop
Libfabric Backend POSIX Backend
N/
Verbs API Linux POSIX API
Infiniband Ethernet LL: Low-Latency
HT: High-Throughput

NetlO Throughput: Push/Pull

40

35

Performance comparison of NetlO and ZeroMQ
45 Throughput [Gb/s]

NetlO/Infiniband eep

NetlO/Ethernet

Message size [Byte]

Push/Pull benchmarks

56G FDR Infiniband
40G Ethernet
| MB pagesize

NetlO outperforms ZeroMQ in
nearly all uses cases

Using the Infiniband mode of the
underlying hardware allows a
performance boost that we can
leverage with NetlO — without
changing our software

NetlO compared to other Infiniband APIs

60

50

40

30

20

10

Infiniband Throughput Comparison for various APlIs

Throughput [Gb/s]

MPI

RDMA CM NetlO SDP

- IPolB

~ 4

< OpenSHMEM
| 1 - —® : A - | 1 1 | 1
YO H D D A @ A o A
EAE AR T A

Message Size [Byte]

Some room for improvement
compared to MPl and RDMA CM
benchmarks

LibFabric is great "’

* Documentation is much better than, e.g.,Verbs

e Asynchronous

* File Descriptors for completion and event queues — easy integration
with epoll

e Technology agnostic
e Enables us to explore new technologies without fear of vendor lock-in

e Or even make better use of our current hardware (e.g. RoCE)

Some ideas from the NetlO perspective

* NetlO requires ordering of messages, i.e. Reliable Connection (RC) mode, for deserialization

 Limits choice of providers

* Might be able to work around that, but it would be nice if the providers took care of that by providing
RC

* Or a generic compatibility mode for non-RC providers. How efficient could that be implemented?

e A written performance tuning guide would be useful
* Parameter settings etc. can be difficult for non-industry experts.VWould be good for us to learn about
best practices

Summary

High Energy Physics has different requirements than

typical HPCs applications

What we need:

APIs with high-level interfaces for datacenter-like
applications that support high-performance fabrics

-> NetlO + LibFabric

NetlO is not yet in production-ready state, but getting
there.The plan is to release NetlO as OpenSource

software ~end of 2017/beginning of 2018

LAr hadronic end-cap and
forward calorimeters

Muon chambers Solenoid magnet | Transifion radiation fracker
Semiconductor fracker

Backup

Memory Management

Messages are packed into (buffering for higher efficiency)

Typical max. page size is | MB

Event loop drives a timeout to send out partial pages and avoid connection starvatation
NetlO maintains a list of pre-allocated, free pages per connection

Default: up to 256 pages per connection

Pages are recycled after having been processed (i.e. fully sent or received)

L ow-level sockets

Uniform interface used by user-level sockets
Abstract interface that is implemented by back-ends
Buffers that contain one or multiple messages
Listen to incoming connection requests, create receive sockets
Receive pages from remote endpoints, deserialize into messages
Send pages to remote endpoint.

No distinction between high-throughput and low-latency communication (this is done in the user-level
sockets)

Configuration interface to enable fine-tuning of connection parameters

User Thread

Low

Latency
Mode

Low latency

e No thread synchronization

* No buffering, pages contain
a single message

e Skipping message queue

* |Immediate handling of
messages via callbacks

* In the future: also skip page
queue

Event Loop Thread

Epoll: Data-received event

Page Queue

Read data into page

Enqueue page

callback

Dequeue page

Process page

Message Queue

Deserialize messages

\/

callback

User code

High
Throughput
Mode

High Throughput

Minimal work in the event
loop so it can return to
process incoming pages
Buffering: Multiple messages
per page

Event-loop drives buffer
timeout to avoid connection
starvation

Explicit user call to retrieve
messages

User Thread

User: recv()

no

-

|

Message queue empty?

yes

Wait for page

Dequeue page

Event Loop Thread

Epoll: Data-received event

Page Queue

Read data into page

Enqueue page

Process page

Deserialize messages

e

Return message from
message queue

User code

Message Queue

~

Back-ends

Uses POSIX stream sockets (TCP), which
translates naturally into the low-level socket API

Nagle’s algorithm disabled
(buffering in user-level sockets)

Simple integration with epoll event loop

Uses libfabric Reliable Connection (RC)

RDM mode is not supported — ordering is
needed to ensure proper deserialization

Send windows used to control data-flow for
higher throughput

Uses file descriptors for asynchronous
completion management — can be integrated
in the epoll event loop

NetlO Throughput: Publish/Subscribe

Performance of NetlO (publish/subscribe)
45 Throughput [Gb/s]

40
NetlO/Infiniband

35 \

30 - -
{ . -
25 N/ ‘I S .
20 NetlO/Ethernet o—gBug—s
|
15
10 :
> A
0 L_H“ T i | | | | | | | | | | |
I R B R

Message Size [Byte]

benchmarks

56G FDR Infiniband
40G Ethernet
| MB pagesize

ZeroMQ already discarded due to
limited performance

NetlO Latency

Round-Trip Time (RTT) Comparison

B ZeroMQ
B NetlO/Ethernet
B NetlO/Infiniband

Arbitrary Scale

— — |

0 20 40 60 80 100 120
round-trip time [us]

Point-to-Point benchmarks
No additional load on switch

56G FDR Infiniband
40G Ethernet

Latency is very similar for ZeroMQ
and NetlO.

Lower latency expected for
NetlO/Infiniband: room for
improvement

23

NetlO compared to other Infiniband APIs

Infiniband Throughput Comparison for various APlIs
Throughput [Gb/s]

60
50 MPI
40
30 RDMA CM SDP
20
10 . IPolB
OpenSHMEM
0 L PR L - & s] I I 1 I 1
% ® v Se) % N N~ N N N
KR S A S

Message Size [Byte]

56G Infiniband FDR

Data-transfer between two
nodes (Intel Haswell, 8-core and
| 0-core systems)

Connected via a single switch

NetlO performance exceeds
the performance of emulation
layers

Still some room for

improvement compared to
MPI/native APIs

NetlO Status & Outlook

Some performance improvements planned
 New ZeroCopy mode
* Improved queuing scheme

Status

e Small functional improvements needed

e Ongoing parameter studies

e User documentation being written

e OpenSource release planned this year

* NetlO going to be used in ATLAS data-taking beginning 2019

	NetIO and LibFabric�
	The ATLAS Experiment
	Data Acquisition
	Slide Number 4
	Requirement for Network API	
	Infiniband API Performance
	Slide Number 7
	NetIO
	User-level sockets
	NetIO Architecture
	NetIO Throughput: Push/Pull
	NetIO compared to other Infiniband APIs
	LibFabric is great
	Some ideas from the NetIO perspective
	Summary
	Backup
	Memory Management
	Low-level sockets
	Low�Latency�Mode
	High�Throughput�Mode
	Back-ends
	NetIO Throughput: Publish/Subscribe
	NetIO Latency
	NetIO compared to other Infiniband APIs
	NetIO Status & Outlook

