
Utilizing HPC Network Technologies in
High Energy Physics Experiments

Jörn Schumacher, CERN
Jorn.Schumacher@cern.ch

On behalf of the ATLAS Collaboration

25th Annual Symposium on High-Performance Interconnects
Santa Clara, 2017

High Energy Physics and Interconnects

In this presentation we will talk about…

… why High Energy Physics (HEP) needs HPC Interconnects

… why the current state-of-the art HPC network APIs are not useful for HEP

… what we can do about it (spoiler: we build our own API)

2

High Energy Physics Particle colliders used in HEP study
physics processes on a microscopic scale

Large Hadron Collider (LHC)
27km circular collider in Geneva, Switzerland

3

Length (m) 46
Diameter (m) 25
Weight (t) 7000
Number of electronic channels 100·106

60 TB/s

2 GB/s

Data Filtering:
Order of
10000x reduction
in real-time

Custom electronics and
a server farm with 40,000 cores

Need High Performance
Networks to move data at high
rates under real-time conditions

Data Acquisition

4

Needle in a haystack: Looking for
extremely rare events with a
probability of 10-13

High-Level Trigger

Readout SystemReadout SystemProcessing Unit Data
Collection
Network

DAQTrigger

ROD ROD ROD

FE FE FE

Muon Calo Track

Level 1 Trigger

Custom Hardware

Readout SystemReadout SystemReadout System

Readout SystemData Logger

CERN Permanent
Storage

~100
nodes

6

~40000 cores

ROI
fragments

Full events

100
kHz
<2.5 µs

~2 GB/s

100 kHz
~160GB/s

L1 Accept

L1 Results,
ROI
Information

ATLAS
Data
Acquisition
2017

40 MHz

5

underground

underground

surface

surface

In total 10,000s of distributed
applications are running on the ATLAS
DAQ system

Not displayed: Monitoring,
Infrastructure, Calibration systems

60 TB/s

High Performance Networks

6

Interconnect Families in Top500 List in July 2017

Source: top500.org

Ethernet and Infiniband are the
two dominant technologies in the
HPC market, OmniPath gaining
share

ATLAS, ALICE, CMS and LHCb – the four LHC
experiments – all use Ethernet and/or Infiniband
in their DAQ systems

What API to use for HPC networks in the HEP environment?
Comparison of APIs based on performance and suitability for HEP

Infiniband API Performance

56G Infiniband FDR

Data-transfer between two
nodes (Intel Haswell, 8-core and
10-core systems)

Connected via a single switch

Native APIs like Verbs or RDMA CM:
Good performance but cumbersome to use
and no high-level patterns

7

Infiniband API Performance

56G Infiniband FDR

Data-transfer between two
nodes (Intel Haswell, 8-core and
10-core systems)

Connected via a single switch

HPC APIs like MPI or PGAS/OpenSHMEM:
Good performance (MPI), but paradigm
does not fit the HEP use case

8

HPC HEP

Regular topology
SPMD Pattern
No Real-Time Requirements
No Failure Tolerance
Static Resource Management

Complex topology
Complex distributed system
Real-Time Requirements
Some Failure Tolerance
Dynamic Resource Management

Server clusters in…

pull

pub/sub

push

client/server
message passing

9

HPC HEP

Regular topology
SPMD Pattern
No Real-Time Requirements
No Failure Tolerance
Static Resource Management

Complex topology
Complex distributed system
Real-Time Requirements
Some Failure Tolerance
Dynamic Resource Management

Server clusters in…

pull

pub/sub

push

client/server
message passing

MPI
PGAS ?

10

Requirements

High Throughput (ATLAS Data Acquisition system has to transport more than100 GB/s)

Low Latency connections for detector control and calibration applications

High level communication patterns like client/server and publish/subscribe

Technology agnostic

11

High level communication
patterns like publish/subscribe,
client/server, push/pull

Simple, clean API

Tuned for low-latency

NO native support for HPC
interconnects

NO high-throughput mode

+ -

Closest match for an API satisfying
HEP requirements:

Can we use ØMQ for HEP purposes? It is
already in use, see
Middleware trends and market leaders 2011
A. Dworak, F. Ehm, W. Sliwinski, M. Sobczak, CERN,
Geneva, Switzerland

But how does it hold up in a data
acquisition context?

12

Infiniband API Performance

56G Infiniband FDR

Data-transfer between two
nodes (Intel Haswell, 8-core and
10-core systems)

Connected via a single switch

IPoIB:
Low performance

13

ØMQ on Infiniband needs to be
run on an emulation layer

IPoIB or SDP

Infiniband API Performance

56G Infiniband FDR

Data-transfer between two
nodes (Intel Haswell, 8-core and
10-core systems)

Connected via a single switch

Socket Direct Protocol:
Better than IPoIB, but not nearly as good as
native APIs

14

ØMQ on Infiniband needs to be
run on an emulation layer

IPoIB or SDP

Infiniband API Performance

56G Infiniband FDR

Data-transfer between two
nodes (Intel Haswell, 8-core and
10-core systems)

Connected via a single switch

Emulation layers have a
significant performance
penalty

15

ØMQ on Infiniband needs to be
run on an emulation layer

IPoIB or SDP

State of the art high-level APIs

Image source: libfabric manual 16

Looking at the problem from the other side: What High-Level APIs are offered for us?

State of the art high-level APIs

Image source: libfabric manual

MPI

17

Looking at the problem from the other side: What High-Level APIs are offered for us?

State of the art high-level APIs

Image source: libfabric manual

MPI Shared Memory

18

Looking at the problem from the other side: What High-Level APIs are offered for us?

State of the art high-level APIs

Image source: libfabric manual

MPI Shared Memory Sockets

19

Looking at the problem from the other side: What High-Level APIs are offered for us?

State of the art high-level APIs

Image source: libfabric manual

MPI Shared Memory Sockets

+ NetIO

20

Looking at the problem from the other side: What High-Level APIs are offered for us?

NetIO

21

A high-level, general-purpose API for HPC networks

NetIO was designed with High Energy Physics experiments in mind, but it is not restricted
to this use case

Design Goals:
• Native support for HPC interconnects via a back-end system
• Different operation modes tuned for high-throughput communication or low-latency

communication
• High-level communication patterns including publish/subscribe

NetIO Architecture

22

NetIO Architecture

23

NetIO Architecture

24

NetIO Architecture

25

NetIO Architecture

26

Memory Management

Messages are packed into pages (buffering for higher efficiency)

Typical max. page size is 1 MB

Event loop drives a timeout to send out partial pages and avoid connection starvatation

NetIO maintains a list of pre-allocated, free pages per connection

Default: up to 256 pages per connection

Pages are recycled after having been processed (i.e. fully sent or received)

27

Low-level sockets
Uniform interface used by user-level sockets

Abstract interface that is implemented by back-ends

Pages: Buffers that contain one or multiple messages

Listen Sockets: Listen to incoming connection requests, create receive sockets

Receive Sockets: Receive pages from remote endpoints, deserialize into messages

Send Sockets: Send pages to remote endpoint.

No distinction between high-throughput and low-latency communication (this is done in the user-level
sockets)

Configuration interface to enable fine-tuning of connection parameters

28

User-level sockets

Provide a simple interface for users

High-level communication patterns:
• Send/Receive
• Publish/Subscribe

Come in two flavors:
• Low-latency
• High-Throughput

Addressing based on IPv4 or IPv6

Low-Latency
• Callback-based
• No buffering

High-Throughput
• Queue-based
• Buffering

LL Send socket HT Send socket

LL Receive socket HT Receive socket

LL Subscribe socket HT Subscribe socket

Publish socket
Both high-throughput and low-latency subscribe sockets can connect

29

Low
Latency
Mode

Low latency
• No thread synchronization
• No buffering, pages contain

a single message
• Skipping message queue
• Immediate handling of

messages via callbacks
• In the future: also skip page

queue

30

High
Throughput
Mode

High Throughput
• Minimal work in the event

loop so it can return to
process incoming pages

• Buffering: Multiple messages
per page

• Event-loop drives buffer
timeout to avoid connection
starvation

• Explicit user call to retrieve
messages

31

Back-ends

POSIX

Uses POSIX stream sockets (TCP), which
translates naturally into the low-level socket API

Nagle’s algorithm disabled
(buffering in user-level sockets)

Simple integration with epoll event loop

Libfabric

Uses libfabric Reliable Connection (RC)

RDM mode is not supported – ordering is
needed to ensure proper deserialization
(That means currently RDM-based libfabric
providers are not supported, for example the
PSM provider for OmniPath. OmniPath is instead
supported by the Verbs provider)
Send windows used to control data-flow for
higher throughput

Uses file descriptors for asynchronous
completion management – can be integrated
in the epoll event loop

32

NetIO Throughput: Push/Pull

Push/Pull benchmarks

56G FDR Infiniband
40G Ethernet
1 MB pagesize

NetIO outperforms ZeroMQ in
nearly all uses cases

Using the Infiniband mode of the
underlying hardware allows a
performance boost that we can
leverage with NetIO – without
changing our software

33

NetIO Throughput: Publish/Subscribe

Publish/Subscribe benchmarks

56G FDR Infiniband
40G Ethernet
1 MB pagesize

Similar to the push/pull
benchmarks, using the Infiniband
mode of the hardware yields a
performance boost

ZeroMQ already discarded due to
limited performance

34

NetIO Latency

Point-to-Point benchmarks
No additional load on switch

56G FDR Infiniband
40G Ethernet

Latency is very similar for ZeroMQ
and NetIO.

Lower latency expected for
NetIO/Infiniband: room for
improvement

35

Arbitrary Scale

NetIO compared to other Infiniband APIs

56G Infiniband FDR

Data-transfer between two
nodes (Intel Haswell, 8-core and
10-core systems)

Connected via a single switch

NetIO performance exceeds
the performance of emulation
layers

Still some room for
improvement compared to
MPI/native APIs

36

NetIO compared to other Infiniband APIs

56G Infiniband FDR

Data-transfer between two
nodes (Intel Haswell, 8-core and
10-core systems)

Connected via a single switch

NetIO performance exceeds
the performance of emulation
layers

Still some room for
improvement compared to
MPI/native APIs

37

NetIO Status & Outlook

Some performance improvements planned
• New ZeroCopy mode
• Improved queuing scheme

Status
• Small functional improvements needed
• Ongoing parameter studies
• User documentation being written
• OpenSource release planned this year
• NetIO going to be used in ATLAS data-taking beginning 2019

38

Conclusion

HPC interconnects are interesting
technologies for HEP

HPC is fundamentally different from HEP
computing and different network APIs are
required

NetIO is network API with high-
level communication patterns
and native support for Ethernet
and HPC interconnects via a
pluggable back-end system

To be used in ATLAS readout
from 2019 on

39

	Utilizing HPC Network Technologies in High Energy Physics Experiments
	High Energy Physics and Interconnects
	High Energy Physics
	Data Acquisition
	Slide Number 5
	High Performance Networks
	Infiniband API Performance
	Infiniband API Performance
	Slide Number 9
	Slide Number 10
	Requirements
	Slide Number 12
	Infiniband API Performance
	Infiniband API Performance
	Infiniband API Performance
	State of the art high-level APIs
	State of the art high-level APIs
	State of the art high-level APIs
	State of the art high-level APIs
	State of the art high-level APIs
	NetIO
	NetIO Architecture
	NetIO Architecture
	NetIO Architecture
	NetIO Architecture
	NetIO Architecture
	Memory Management
	Low-level sockets
	User-level sockets
	Low�Latency�Mode
	High�Throughput�Mode
	Back-ends
	NetIO Throughput: Push/Pull
	NetIO Throughput: Publish/Subscribe
	NetIO Latency
	NetIO compared to other Infiniband APIs
	NetIO compared to other Infiniband APIs
	NetIO Status & Outlook
	Conclusion

