
A
TL

-D
A

Q
-P

R
O

C
-2

01
7-

02
0

10
Ju

ly
20

17

Utilizing HPC Network Technologies in High
Energy Physics Experiments

Jörn Schumacher
on behalf of the ATLAS Collaboration

CERN
Geneva, Switzerland

joern.schumacher@cern.ch

Abstract—Because of their performance characteristics, high-
performance fabrics like Infiniband or OmniPath are interesting
technologies for many local area network applications, including
data acquisition systems for high-energy physics experiments like
the ATLAS experiment at CERN. This paper analyzes existing
APIs for high-performance fabrics and evaluates their suitability
for data acquisition systems in terms of performance and domain
applicability.

The study finds that existing software APIs for high-
performance interconnects are focused on applications in high-
performance computing with specific workloads and are not
compatible with the requirements of data acquisition systems.
To evaluate the use of high-performance interconnects in data
acquisition systems, a custom library called NetIO has been
developed and is compared against existing technologies.

NetIO has a message queue-like interface which matches the
ATLAS use case better than traditional HPC APIs like MPI. The
architecture of NetIO is based on an interchangeable back-end
system which supports different interconnects. A libfabric-based
back-end supports a wide range of fabric technologies including
Infiniband. On the front-end side, NetIO supports several high-
level communication patterns that are found in typical data
acquisition applications like client/server and publish/subscribe.
Unlike other frameworks, NetIO distinguishes between high-
throughput and low-latency communication, which is essential
for applications with heterogeneous traffic patterns. This feature
of NetIO allows experiments like ATLAS to use a single network
for different traffic types like physics data or detector control.

Benchmarks of NetIO in comparison with the message queue
implementation ØMQ are presented. NetIO reaches up to 2x
higher throughput on Ethernet and up to 3x higher throughput
on FDR Infiniband compared to ØMQ on Ethernet. The latencies
measured with NetIO are comparable to ØMQ latencies.

I. INTRODUCTION

Data-acquisition (DAQ) systems for High-Energy Physics
experiments like the Large Hadron Collider experiment AT-
LAS ([1], Figure 1) are designed to process and filter the
data generated by the experiment. The physics processes under
study are typically very rare, and thus the experiments generate
a large amount of data to gain statistical significance. In normal
operation the detectors of the ATLAS experiment generate
60 TB/s of raw data. The data are pre-filtered in hardware.
The pre-filtered data are fed into the ATLAS DAQ system at
a rate in the order of hundred Gigabytes per second.

To process data at this rate in real-time, the ATLAS DAQ
system is designed as a distributed system composed of thou-
sands of interconnected compute nodes organized in a complex

architecture. A fast interconnect is an essential component of
the ATLAS DAQ system that has a direct impact on overall
system performance.

The traffic requirements on the DAQ network are het-
erogeneous. On the one hand the high data rates require a
network with a large bandwidth. For the network software this
implies the use of adequate buffering techniques to provide
a high throughput and good link utilization. On the other
hand systems like detector control, monitoring, or calibration
rely on low latencies for message transfers while the required
bandwidth is low. This is crucial for safe operation of the
detector. For example, a sudden rise of temperature in one
of the experiment’s detector components needs to be detected
and handled with appropriate counter measures within a short
window of time to protect the sensitive electronics from
damage. The network technology and the network software
stack need to incorporate these heterogeneous requirements.

The requirements of ATLAS on the network software stack
are considerably different than typical HPC requirements. A
typical paradigm in HPC that is manifested in APIs like MPI
or PGAS is that a large computing problem is subdivided
into smaller chunks that are processed by individual nodes
in a cluster. The actual network topology is transparent to the
application. Communication in HPC applications is typically

Fig. 1. The detectors of the ATLAS experiment. The experiment is one of the
four experiments at the Large Hadron Collider, a circular particle collider with
a 27 km circumference. The experiment itself is housed in an underground
cavern circa 100 m below surface level.

very structured and nodes are organized in fixed topologies
like a grid or mesh. In contrast, DAQ systems are organized in
much more complex architectures. The ATLAS DAQ system
is composed of several sub-systems for specific functions like
data buffering, event building, event filtering, storage and
others. The sub-systems are interconnected using different
communication patterns such as push/pull, request/reply, or
publish/subscribe, and employ techniques for dynamic load
balancing.

Furthermore, DAQ applications need to be robust against
failure. If a node in the network fails or a software application
crashes, traffic needs to be redirected to other nodes that need
to process the additional load. Data loss up to a certain degree
is tolerated, as partial event data can still be meaningful for
physics analysis. However, the system needs to recover from
error scenarios quickly, ideally within seconds. For example,
in the case of a failure of a data buffer, events that were stored
in this buffer are lost. In contrast, in HPC applications data
loss is unacceptable since every node contributes to the end
result of a computation. However, since there are no real time
requirements a job can be restarted or reverted to a checkpoint
in case of a system failure.

For these reasons DAQ network applications are built using
dynamic communication patterns like client/server or pub-
lish/subscribe. Robustness and error tolerance are easier to
achieve than with message passing APIs. High-level commu-
nication patterns also allow for easy scalability. For instance,
additional subscribers in a publish/subscribe system can be
added transparently without impacting the overall architecture
of the distributed system.

The ATLAS experiment traditionally only used Ethernet
networks. However, alternative interconnects from the HPC
community like Infiniband or OmniPath exhibit promising
performance characteristics and are an interesting alternative
for a local area network for the ATLAS DAQ system. The
use of Infiniband is currently being evaluated as a technology
candidate for the planned LHC upgrade in 2019.

The rest of this paper is organized as follows: Section II
gives an overview of different network software stacks for
high performance interconnects with a focus on suitability for
DAQ applications. In Section III the architecture of the custom
NetIO library is discussed. Performance results are presented
in Section IV. Section V lists related work. Section VI gives
a conclusion.

II. OVERVIEW OF NETWORK SOFTWARE STACKS FOR HPC

In this section different network technologies are compared
based on two factors: (a) the throughput performance that can
be achieved for different message sizes, and (b) the suitability
of the API for applications in HEP, specifically data acquisition
systems. The performance measurements (Figure 2) were
performed on two servers connected via 56G Infiniband FDR.
An overview of the different APIs discussed in this section is
also given in Table I.

2 8 32
128

512 2k 8k
32k

128k
512k

Message Size [Byte]

0

10

20

30

40

50

60
Throughput [Gb/s]
Infiniband Throughput Comparison for various APIs

RDMA CM

MPI

NetIO SDP

IPoIB

OpenSHMEM

Fig. 2. Throughput for various network software stacks on 56G Infiniband
FDR. The best throughput is achieved with RDMA CM (native) and MPI
(message passing). OpenSHMEM, a PGAS implementation, shows poor
performance for small message sizes. The measurements for the compatibility
layers IPoIB and SDP were taken with the iperf3 benchmark. Performance
is limited in both cases, however SDP yields much higher throughput. NetIO
has a similar peak performance as SDP, but can achieve this throughput over
a much bigger span of message sizes. Software releases used: RDMA CM,
IPoIB and SDP from Mellanox OFED 3.4, OpenMPI 1.10, OpenSHMEM 1.2,
NetIO 0.6.

A. Native APIs

Verbs or RDMA CM for Infiniband networks or PSM for
OmniPath networks are native APIs for high-performance
fabrics. These APIs allow users to retain full control over the
underlying fabric. Their low-level nature, however, can make
development cumbersome. Native APIs enable the highest
possible performance, but this has to be achieved by manual
tuning. Native APIs are often not portable among different
fabrics. The low-level libfabric library [2] allows portability
by providing a thin abstraction layer on top of native APIs.

Native APIs are of limited use to high-energy physics
experiments. While the performance that can be achieved with
native APIs is excellent, the development effort is high due to
the lack of high-level communication patterns. The limited
portability can lead to vendor lock-in, which is an issue for
experiments like ATLAS with a lifespan of many decades.

B. MPI

MPI is one of the standard APIs in the HPC commu-
nity. MPI follows a single-program-multiple-data (SPMD)
paradigm [3], i.e., the same program is executed on multiple
hosts and this distributed set of applications process a com-
mon dataset. MPI has only limited support for heterogeneous
distributed applications with dynamic communication patterns
like client/server. Instead it focuses on message passing in
a cluster of homogeneous processes. It is therefore only of
limited use for data acquisition systems that are composed
of many individual communicating components rather than a
homogeneous set of processes among which a fixed work set is

TABLE I
OVERVIEW OF HIGH-PERFORMANCE NETWORK APIS

Network API Paradigm Performance Suitability

Librdma RDMA, RC, RDM Very good High complexity
OpenMPI MPI Very good Poor, HPC-oriented
OpenSHMEM PGAS Poor Poor, HPC-oriented
IPoIB POSIX Sockets Poor Average, but no high-level patterns
SDP POSIX Sockets Good for some message-sizes Average, but no high-level patterns
ØMQ Message Queue Good for some message sizes, but no native

fabric support (only SDP)
Very good

NetIO Custom Message Queue Good Very good

divided. MPI also includes process management functionalities
which are more suited for homogeneous clusters rather than
distributed systems with complex architectures. Concerning
performance many fabrics are tuned for MPI workloads, so
in general a good performance can be expected.

C. Shared Address Space (PGAS)

Unlike all other presented APIs, shared address space in-
terfaces are not based on message exchange between appli-
cations. Instead a global partitioned address space is exposed
to the processes. Every process has local allocated memory
regions that can be synchronized among the different nodes.
PGAS implementations like OpenSHMEM [4] are well suited
for SPMD applications in HPC because of the simple parallel
access to distributed data. For HEP applications that rely on
raw throughput the PGAS approach provides less performance
than other APIs. It also more difficult to map the HEP use case
to the global address space paradigm.

D. POSIX Sockets

POSIX [5] Sockets are a wide-spread API standard, mostly
used for TCP communication over Ethernet. Compatibility
layers are available for fabrics as well, for example IPoIB (IP-
over-Infiniband, [6]) or SDP (Socket Direct Protocol, [7]). The
POSIX socket API is versatile enough to implement dynamic
communication patterns on top of it (see next paragraph on
message queues). However, since the POSIX socket API is
implemented as an abstraction layer on top of the respective
native fabric API, performance might be limited compared to
more low-level APIs. In Figure 2 this is the case for IPoIB,
with which only a relatively low throughput can be achieved.
SDP, a POSIX socket implementation based on native IB APIs
promises better throughput. However, the peak throughput
is only achieved for specific input parameter configurations.
Compared to MPI and native APIs the performance is very
sensitive to the message size being used.

E. Message Queues

Message queues like ØMQ [8] or RabbitMQ [9] have
gained popularity as inter-process communication frameworks,
also in the high-energy physics community [10], [11]. Mes-
sage queues provide high-level communication patterns out
of which complex distributed applications can be composed.
Message queue APIs like ØMQ perfectly fulfill the ATLAS

requirements. Unfortunately no message queue implementa-
tion supports fabrics other than Ethernet. For other fabrics a
compatibility layer like IPoIB or SDP has to be used, which
limits performance.

F. Custom: NetIO

Message queue APIs provide the most natural user inter-
face for high-energy physics data acquisition applications.
However, the lack of support for HPC fabrics limits their
applicability. Our custom library NetIO is an implementation
of a message queue that addresses this limitation by providing
native support for HPC fabrics. NetIO uses libfabric as a back-
end and hence supports a wide range of fabric technologies.
Figure 2 shows that NetIO achieves around 75 % peak link
utilization on a single connection for a large range of message
sizes.

III. ARCHITECTURE OF NETIO

NetIO is designed as a generic message-based networking
library that is tuned for typical use cases in DAQ systems.
It supports four different communication patterns: low-latency
point-to-point communication, high-throughput point-to-point
communication, low-latency publish/subscribe communica-
tion, and high-throughput publish/subscribe communication.

NetIO has a back-end system to support different network
technologies and APIs. Currently two different back-ends
exist. The first back-end uses POSIX sockets to establish
reliable connections between endpoints. Primarily this back-
end is used on TCP/IP connections in Ethernet networks, but
in principle a technology like SDP could also be used. The
second back-end is based on libfabric [12]. It is used for com-
munication via Infiniband and similar network technologies.

The NetIO architecture is illustrated in Figure 3. There are
two software layers within NetIO. The upper level contains
user-level sockets. These are the sockets that application code
interacts with. The different socket types are listed in Table II.

The lower architecture level provides a common interface to
the underlying network APIs. The common interface consists
of three low-level socket types (a send socket, a listen socket
and a receive socket), which are implemented by each back-
end. The low-level sockets provide basic connection handling
and simple transmission of messages between two endpoints.
All higher level functionality like buffering, notification of
user code via callbacks, or the publish/subscribe system are

LL Send HT SendLL Receive HT Receive Publish Subscribe

Low-Level Sockets Send Listen Receive

Libfabric Backend POSIX Backend

Verbs API

Infiniband Ethernet

Event Loop

User-Level API

Linux POSIX API

LL: Low-Latency
HT: High-Throughput

Fig. 3. The NetIO architecture.

TABLE II
THE DIFFERENT TYPES OF USER-LEVEL SOCKETS IN NETIO

Socket Type Description

Low-Latency
Send A message that is posted is immediately sent to the remote endpoint without any delay.
Receive A message that is received is immediately passed to the user code via a callback.

High-Throughput
Send Messages are copied into a large connection buffer instead of being sent immediately. The

buffer is transmitted when it is full or after a timeout occurs.
Receive When a message buffer is received the contained messages are copied into separate message

datastructures and enqueued in a message queue. User code can read the received messages
by calling recv() on the receive socket.

Publish/Subscribe
Publish When a message is published under a given tag, the tag is matched against a subscription

table and the message is sent to all subscribed remote endpoints via either low-latency or
high-throughput send sockets.

Subscribe Sends subscription requests to publish sockets via low-latency send sockets and then receives
messages via either a low-latency or a high-throughput receive socket.

implemented in the user-level sockets. This maximizes code
sharing among the back-ends, as only code that is specific
to the underlying network technology is implemented in the
low-level sockets.

Both architecture levels use a central event loop to handle
I/O events like connection requests, transmission completions,
error conditions, or timeouts. The event loop is executed in
a separate thread. Its implementation is based on the epoll
framework [13] in the Linux kernel.

Network endpoints are addressed by IP address and port,
even for back-ends that do not natively support this form of
addressing. For the Infiniband back-end the librdma compati-
bility layer is used to enable addressing by IP and port.

A. User-level sockets

There are six different user-level sockets, of which four are
point-to-point sockets (one send socket and one receive socket,
each in a high-throughput and a low-latency version), and
two publish/subscribe sockets (one publish and one subscribe
socket). The publish/subscribe sockets internally use the point-
to-point sockets for data communication. Subscribe sockets
can subscribe to multiple data tags from multiple publish
sockets. Each subscription can either be created in high-
throughput or low-latency mode.

A high-throughput send socket does not send out messages
immediately but maintains buffers in which messages are
copied. The buffers are referred to as pages. Due to the

buffering fewer, larger packets are sent on the network link.
This approach is more efficient and yields a higher throughput.
However, the average transmission latency of any specific
message is increased due to the buffering. A typical page size
is 1 MB. Once a page is filled the whole page is sent to the
receiving end. Additionally, a timer (driven by the central event
loop) flushes the page at regular intervals to avoid starvation
and infinite latencies on connections with a low message rate.
A typical timeout interval is 2 s. A message is split if it does
not fit into a single page. The original message is reconstructed
on the receiving side.

A high-throughput receive socket receives pages that contain
one or more messages or partial messages. The messages are
encoded by simply prepending an 8 byte length field to the
message contents. The high-throughput receive socket main-
tains two queues: a page queue, which contains unprocessed
pages that have been received from a remote, and a message
queue, in which messages are stored that are extracted from
pages when they are processed. The high-throughput receive
socket enqueues received pages in the receive page queue.
When user code calls recv() on a high-throughput receive
socket, it will return the next message from the message queue.
If the message queue is empty, the next page from the receive
page queue is processed and the contained messages are stored
in the message queue. When processing a received page the
contained messages are copied. A new zero-copy mode is
currently under development in which it is also possible to

avoid this additional copy.
A low-latency send socket does not buffer messages. Mes-

sages are immediately sent to the remote process. Unlike
for high-throughput send sockets, there is also no additional
copy: the message buffer is directly passed to the underlying
low-level socket. These design decisions minimize the added
latency of a message send operation.

A low-latency receive socket handles incoming messages
by passing them to the application code via a user-provided
callback routine, instead of enqueuing the messages in a
message queue. This approach enables incoming messages
to be processed immediately. The message buffer is only
valid during execution of the callback. After execution of the
callback routine the receive buffer will be freed. If necessary,
a user can decide to copy the buffer in the callback routine.

High-throughput and low-latency receive sockets also differ
in the way threading is involved in processing incoming
messages. In both cases a page receipt notification from a
low-level receive socket is handled in the event loop thread.
In high-throughput receive sockets the page is immediately
pushed into the receive page queue, after which the event
handler returns and the event loop thread is free to process
further events. Parsing the page, extracting the messages and
processing them with user code is done in the user thread.
In low-latency sockets the event handler routine executed by
the event loop thread will call the user-provided callback.
Thus, all user code is executed by the event loop thread.
The event handler will only return after the user callback is
processed. This might block the event loop from processing
further events for any amount of time. Users have to take
care to implement sensible callback routines that do not block
the event loop too long, or otherwise performance might
degrade. The benefit of executing user code in the event loop
thread is, however, that no latency is added by queuing of
messages. Message processing in high-throughput and low-
latency sockets is illustrated in Figures 4 and 5.

Publish and subscribe sockets internally use point-to-point
user sockets for communication. On top of that, publish
sockets maintain a dynamic subscription table to manage
subscriptions from subscribe sockets.

B. Low-Level Sockets

The interface to the NetIO back-ends is provided to the user-
level sockets by three types of low-level sockets: back-end
send sockets, back-end listen sockets, and back-end receive
sockets. Back-end listen and receive sockets are used on
the receiving side of a connection. Back-end listen sockets
open a port and listen for incoming connections by back-end
send sockets. A back-end receive socket is created when a
connection request arrives at a back-end listen socket. A back-
end receive socket represents a single connection. A back-end
send socket is used on the sending side of a connection. A
back-end send socket can connect to a port opened by a back-
end listen socket and send messages when the connection is
established.

The back-end sockets provide callback entry points for user-
level sockets that are called when a connection has been
successfully established, a remote has disconnected, or data
has arrived.

The low-level API also provides an interface for back-end
buffers. These are buffers that are used by the back-end sockets
and can be transmitted over the network. Back-ends might
have special requirements on buffers. Libfabric for example
requires that all buffers are previously registered in a central
registry.

C. The POSIX Back-end

The POSIX back-end is straight-forward and uses the socket
API that is defined in the POSIX standard [5]. The back-
end uses sockets of the SOCK STREAM type, i.e. TCP/IP
connections. The socket option TCP NODELAY is set, which
disables Nagle’s algorithm [14]. Nagle’s algorithm can tem-
porarily delay packet sends to reduce the number of TCP
packets on the wire. The buffering capabilities of the user-
level sockets however allow a more fine-grained control over
packet delay, so Nagle’s algorithm can be deactivated.

The POSIX socket API uses file descriptors to represent
the sockets. These file descriptors are registered in the central
event loop. Thus, when a connection request or a new message
arrives, the corresponding sockets are informed and handler
routines are executed. The POSIX sockets are configured to
asynchronous, non-blocking mode, i.e., the O NONBLOCK
flag is set.

D. The FI/Verbs Back-end

Libfabric provides several communication modes to the
user, for example reliable datagram (RDM) communication,
reliable connection (RC) communication (which works like
RDM but additionally provides message ordering), or RDMA.
Libfabric be can used on top of several network stacks. For
Infiniband, the library utilizes librdma and libibverbs. For Intel
OmniPath, the native PSM2 interface can be used.

The NetIO FI/Verbs back-end uses the reliable connection
communication model from libfabric. Libfabric also provides
reliable datagram communication, but the reliable connection
model preserves message order. Preservation of message order
is important since a message can span multiple NetIO buffers
(see Section III-A on high-throughput sockets).

Libfabric provides so-called active and passive endpoints to
manage connections. Passive endpoints listen to incoming con-
nections, while active endpoints are the equivalents of sockets
and are used to send and receive messages. The libfabric API is
fully asynchronous, and connection management notifications
are presented to the user as events that need to be handled.
Each endpoint has an event queue in which connection events
are stored. Libfabric allows a file descriptor to be registered
with an event queue. When a new event arrives, the file
descriptor becomes readable. The NetIO FI/Verbs back-end
uses these event queue file descriptors and registers them in
the central event loop.

Epoll: Data-received event

Read data into page

Page Queue
Enqueue page

Dequeue page

callback

Process page

Deserialize messages

User code

callbackMessage Queue

Event Loop ThreadUser Thread

Fig. 4. Processing of incoming messages in NetIO low-latency sockets. Note that all processing, including the execution of user code, is performed in the
event loop thread.

Read data into page

Page Queue

Enqueue page

Message Queue

Event Loop ThreadUser Thread

User: recv()

Dequeue page

Process page

Deserialize messages

Return message from
message queue

Message queue empty?

User code

no yes

Epoll: Data-received event

Wait for page

Fig. 5. Processing of incoming messages in NetIO high-throughput sockets. After the data is received in the event loop thread, all processing is done in the
user level thread. The event loop thread is freed up to process further incoming data.

POSIX sockets have internal buffers. When a message is
sent on a POSIX socket, the data are copied into the internal
buffer, from which the data are then sent to the remote process.
The user-supplied buffer is usable again immediately after the
send call. Similarly, a receiving POSIX socket receives data in
an internal buffer, and a receive call will copy the data out of
the internal buffer. The user does not need to supply a buffer
in which data from the network can be received.

The FI/Verbs back-end is asynchronous and makes it pos-
sible to send and receive messages without data copies.
Libfabric endpoints do not have internal buffers. When a
message is sent, the user-supplied message buffer is used and
no data are copied. A user needs to provide receive buffers
to receive messages. Each active endpoint has a queue for
completion events to manage the send and receive buffers.
Completions notify the user-space application of the result
of the send or receive operation. After a send completion
arrives, the corresponding send buffer can be reused for
new send operations. After a receive completion arrives, the
corresponding receive buffer is filled with a message from

a remote host and can be processed. Like the connection
management events the completion events can trigger a file
descriptor. NetIO uses such completion file descriptors and
registers them in the central event loop.

Libfabric requires send and receive buffers to be registered
with the call fi_mr_req. The FI/Verbs back-end provides a
data buffer interface that performs this registration step.

E. The Intel OmniPath Back-end

Intel OmniPath [15] is a recent fabric technology that is
based on the TrueScale technology [16] formerly by the
QLogic company. On the software side, OmniPath has a Verbs
interface and is thus directly supported by NetIO via libfabric.
OmniPath additionally provides a native API called PSM,
which is also supported by libfabric. However, the libfabric
PSM provider does not currently support the reliable connec-
tion mode, which is needed for NetIO. NetIO on OmniPath
therefore currently only works using the Verbs interface and
is considered experimental.

TABLE III
SYSTEMS USED FOR NETIO BENCHMARKS

System 1 System 2

CPU Type Intel Xeon E5-2630 v3 Intel Xeon E5-2660 v3
CPU Clock Speed 2.40 GHz 2.60 GHz
Nr of cores

real 8 per CPU 10 per CPU
threads 16 per CPU 20 per CPU

Nr of CPUs 2 2
Memory 64 GB 64 GB

16 64
256 1k 4k

16k
64k

256k 1M 4M
16M

64M
256M 1G

Message size [Byte]

0

5

10

15

20

25

30

35

40

45

NetIO/Ethernet

ZeroMQ/Ethernet

NetIO/Infiniband

Throughput [Gb/s]
Performance comparison of NetIO and ZeroMQ

Fig. 6. Throughput measured with NetIO and ØMQ on 40G Ethernet and
NetIO on 56G Infiniband FDR for various message sizes. Note that only a
single connection is used between the two systems, hence the link is not fully
utilized.

IV. BENCHMARKS

We performed several experiments to evaluate the perfor-
mance of NetIO. As a reference point we use the ØMQ [17]
library to compare NetIO against. ØMQ is a library that gained
popularity in the HEP community and is used in several
projects in the LHC experiments. ØMQ provides point-to-
point communication as well as a publish/subscribe system.
Benchmarks are performed between two nodes connected
via a single switch. The benchmark system configuration
is described in Table III. The systems are equipped with
Mellanox ConnectX-3 VPI network interface cards, which can
be operated in 40G Ethernet mode or 56G Infiniband FDR
mode.

The first benchmark scenario consists of point-to-point
communication between the two systems using NetIO high-
throughput sockets and a single connection. The sending
side uses the NetIO test tool netio_throughput to
send messages to the receiving node, which uses the pro-
gram netio_recv to receive the messages. The throughput
achieved for various message sizes is shown in Figure 6.

NetIO on Ethernet and ØMQ on Ethernet have a very similar
peak performance of around 30 Gb/s. NetIO, however, reaches
higher throughput values for small and large message sizes.
For message sizes less than 64 kB an up to two-fold better

16 64
256 1k 4k

16k
64k

256k 1M 4M
16M

64M
256M 1G

Message Size [Byte]

0

5

10

15

20

25

30

35

40

45
Throughput [Gb/s]
Performance of NetIO (publish/subscribe)

NetIO/Ethernet

NetIO/Infiniband

Fig. 7. Throughput performance of NetIO publish/subscribe sockets on 40G
Ethernet and 56G Infiniband FDR. The peak performance of NetIO with the
Infiniband back-end is more than 30% faster than NetIO with the Ethernet
back-end.

throughput is measured with NetIO than with ØMQ. NetIO on
Infiniband outperforms both NetIO and ØMQ on Ethernet for
message sizes smaller than 32 MB. For larger message sizes
the CPU cache limits performance. The peak performance is
around 40 Gb/s.

An experiment with NetIO high-throughput
publish/subscribe sockets is shown in Figure 7. Similar
to the previous benchmark NetIO on Infiniband outperforms
NetIO on Ethernet. The achieved peak performance in each
case is comparable to the point-to-point benchmarks.

A third benchmark analyzes the performance of NetIO
low-latency sockets. We measure the round-trip time (RTT)
between two systems in Table III. In both cases, Ethernet and
Infiniband, there is one switch in the middle. The results of
the measurements are shown in Figure 8.

NetIO on Ethernet, NetIO on Infiniband, and ØMQ show
all very similar RTT values. The average RTT is in the case
of Ethernet around 40µs, for Infiniband it is just slightly
higher. The difference for Infiniband indicates that the NetIO
Infiniband back-end is slightly less efficient and still needs to
be optimized.

V. RELATED WORK

ØMQ has limited support for Infiniband via SDP, the
Sockets Direct Protocol. SDP is an implementation of a TCP-
like stream protocol on top of RDMA network hardware. SDP
can show performance improvements over IPoIB [18].

One has to resort to native APIs like Verbs to utilize the
full capability of HPC fabrics like Infiniband. The RDMA
Connection Manager (RDMA CM) from the OpenFabrics
Alliance simplifies the addressing part of RDMA transfers
by using IP (using IPoIB) for addressing and connection
management. Data transfers are done using the native Verbs
calls. This approach is described in [19]. The advantage of this
approach is full flexibility and the availability of all features of

0 20 40 60 80 100 120
round-trip time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
normalized

Round-Trip Time (RTT) Comparison

ZeroMQ
NetIO/Ethernet
NetIO/Infiniband

Fig. 8. Round-trip time comparison between NetIO on Ethernet, NetIO
on Infiniband, and ØMQ. All three implementations have a similar average
value. NetIO on Infiniband has a slightly higher round-trip time than NetIO
on Ethernet which can likely be explained by the different NetIO back-end
implementation.

Infiniband like RDMA. However, even with the RDMA CM
library setting up and maintaining connections is still complex
compared to high-level libraries. This approach can also not
natively run on Ethernet or other networks that do not support
Verbs and librdma.

VI. CONCLUSIONS

In this paper we highlight the differences between data-
acquisition system networks for high energy physics exper-
iments like ATLAS and networks in HPC. We came to
the conclusion that the typical requirements on the network
software stack are fundamentally different in the two domains.
Nevertheless, HPC interconnect technologies have promising
performance features, both in terms of throughput and latency.

We could show that in order to leverage HPC interconnects
like Infiniband or OmniPath, the HEP community is mostly
missing appropriate software APIs that match the require-
ments and characteristics of typical DAQ applications. This
involves a significant paradigm shift from a simple problem
division approach as found in MPI, PGAS or other parallel
computing frameworks, to high-level communication patterns
like client/server or publish/subscribe.

Experiments with an Infiniband FDR setup showed that
existing socket-based APIs that provide a DAQ-compatible
interface have low performance compared to native Infiniband
benchmarks when using compatibility layers like IPoIB or
SDP. With NetIO we presented a library that implements high-
level communication patterns with a libfabric-based back-end.
NetIO was built to bridge the gap between HPC interconnect
hardware and HEP requirements.

The throughput performance of NetIO is on a par with
the peak performance achieved in benchmarks with SDP.
However, NetIO maintains the high throughput over a large

span of parameters, while the SDP benchmark only achieves
high performance in a few scenarios.

There is still room for improvement for NetIO. MPI and
RDMA benchmarks exhibit an up to 25 % higher throughput.
Future work will focus on closing this gap. One approach is the
reduction of memory copies in the NetIO data flow. Another
area of work is the support for more network technologies such
as Intel OmniPath. A NetIO OpenSource release is planned for
later this year.

While the work described here mostly concerns applications
in high-energy physics, we can envisage that the results could
be applied to other data center applications, for example
applications in the Big Data domain.

REFERENCES

[1] The ATLAS Collaboration, “The ATLAS Experiment at the CERN Large
Hadron Collider,” Journal of Instrumentation, vol. 3, no. 08, 2008.

[2] P. Grun, S. Hefty, S. Sur, D. Goodell, R. D. Russell, H. Pritchard, and
J. M. Squyres, “A Brief Introduction to the OpenFabrics Interfaces -
A New Network API for Maximizing High Performance Application
Efficiency,” in 2015 IEEE 23rd Annual Symposium on High-Performance
Interconnects, Aug 2015, pp. 34–39.

[3] F. Darema, “The spmd model: Past, present and future,” in European
Parallel Virtual Machine/Message Passing Interface Users Group Meet-
ing. Springer, 2001.

[4] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel,
and L. Smith, “Introducing OpenSHMEM: SHMEM for the PGAS
community,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model. ACM, 2010, p. 2.

[5] System Application Program Interface (API), ser. Information
technology—Portable Operating System Interface (POSIX), 1990.

[6] J. Chu and V. Kashyap, “Transmission of IP over InfiniBand (IPoIB),”
RFC 4391 (Proposed Standard), Internet Engineering Task Force, Apr.
2006. [Online]. Available: http://www.ietf.org/rfc/rfc4391.txt

[7] D. Goldenberg, M. Kagan, R. Ravid, and M. S. Tsirkin, “Zero copy
sockets direct protocol over infiniband-preliminary implementation and
performance analysis,” in High Performance Interconnects, 2005. Pro-
ceedings. 13th Symposium on. IEEE, 2005, pp. 128–137.

[8] P. Hintjens, ZeroMQ: Messaging for Many Applications. O’Reilly
Media, Inc., 2013.

[9] A. Richardson et al., “Introduction to RabbitMQ,” Google UK, available
at http://www. rabbitmq. com/resources/google-tech-talk-final/alexis-
google-rabbitmq-talk. pdf, retrieved on Mar, vol. 30, p. 33, 2012.

[10] A. Dworak, M. Sobczak, F. Ehm, W. Sliwinski, and P. Charrue, “Middle-
ware trends and market leaders 2011,” in 13th International Conference
on Accelerator and Large Experimental Physics Control Systems, 2011.

[11] A. Dworak, F. Ehm, P. Charrue, and W. Sliwinski, “The new CERN
Controls Middleware,” Journal of Physics: Conference Series, vol. 396,
no. 1, p. 012017, 2012.

[12] OpenFabrics Working Group. Libfabric. [Online]. Available:
https://ofiwg.github.io/libfabric/

[13] Linux User’s Manual, epoll(7), April 2012.
[14] J. Nagle, “Congestion Control in IP/TCP Internetworks,” RFC 896,

Internet Engineering Task Force, Jan. 1984. [Online]. Available:
http://www.ietf.org/rfc/rfc896.txt

[15] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rim-
mer, K. D. Underwood, and R. C. Zak, “Intel Omni-path Architecture:
Enabling Scalable, High Performance Fabrics,” 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects, pp. 1–9, 2015.

[16] Intel, “Intel True Scale Fabric Architecture: Enhanced HPC Architecture
and Performance,” vol. 1, November 2012.

[17] P. Hintjens, M. Sústrik, and Others. ZeroMQ. [Online]. Available:
http://zeromq.org/

[18] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and
D. K. Panda, “Sockets Direct Protocol over InfiniBand in clusters: is
it beneficial?” in Performance Analysis of Systems and Software, 2004
IEEE International Symposium on - ISPASS, 2004, pp. 28–35.

[19] T. Bedeir, “Building an RDMA-capable application with IB Verbs,”
Technical report, HPC Advisory Council, 2010. [Online]. Available:
http://hpcadvisorycouncil.com/

