OFI Data Storage / Data Access Subteam Weekly telecom – 06/21/2016
DS/DA Shared Documents: http://downloads.openfabrics.org/WorkGroups/ofiwg/

Agenda
· roll call, agenda bashing
Kernel mode stuff
· Brief update on the status of the GitHub repo, and progress toward merging the two kfabric proposals.
Persistent memory stuff
· Update from Chet Douglas on Intel proposal for extending RDMA support for persistent memory access.

Intel Proposal for Extending RDMA support for PM access – Chet Douglas
See the document “RDMA Extensions-Proposed libfabric API.DOCX
· This is a follow-up to a presentation Chet gave to this group probably about a year ago on Intel’s thinking about using software methods to make persistent writes durable.
· Intel is looking at a number of s/w and h/w changes for its next platform. The previous mechanisms required a number of extra software steps to make it work.
· This is a libfabric proposal for a ring 3 API, and what extensions to it might look like, driven by an internal Intel hardware assessment of data paths and so on.
· One key objective: reduce h/w complexity. The proposal recognizes that the h/w design pipeline can be long.
· Chet will publish a new version of the doc following this meeting.
· Q: are these enhancements specific to OFI, or can they be extended to verbs? A: Should mirror nicely into verbs.
· Proposing changes to three libfabric APIs: fi_getinfo, fi_mr_reg, fi_writemsg
· fi_getinfo – changes to the info flags to indicate the existence of persistent memory, i.e. this device supports accesses on something other than a block granularity.
· fi_mr_reg – proposing three new flags: fi_pmem to indicate that the memory region being registered is persistent. fi_uncached is a hint to indicate to the provider that this region should not be cached. Helps the NIC decide how to handle caching for this memory region. This hint applies to the target side; it is an open question as to whether it should be made available on the initiator side. fi_non_standard_memory_device, mainly for use if the PM is not attached to a memory bus. Allows kernel driver to supply whatever resources the NIC may need. Q: Current libfabric doesn’t distinguish between L_Key and R_Key, today you get a descriptor (equiv to an L_Key) and a key (equivalent to an R_Key). The group seemed to agree that this flag should not be exposed across the API to the consumer, but is useful to the provider implementation.
· fi_writemsg – asking for new op codes for fi_write_commit, and fi_write_commit_immediate. For the moment, include these as flags to the existing fi_writemsg API. The provider will probably use these flags to create a new op code. New flags: FI_COMMIT basically gives the completion semantics of an RDMA READ, i.e., you get a completion when data in scope has reached the global visibility point.
Resuming on 6/21/16
· There is a corresponding Intel protocol proposal to go along with this.
· fi_writemsg – see above. Additional flags to the API, which is unchanged. New flags: (continued from above) FI_COMMIT modifies the normal completion semantic on the initiator side, probably results in a new opcode on the wire. FI_COMMIT is specific to a particular connection and R_key. (The expression “QP” should be changed to endpoint, which is the semantics used by libfabric.) For non-volatile memory, FI_COMMIT indicates that the data has reached the global visibility point, but is not durable. FI_IMMED modifies the completion semantics on the target side. This is different from a write with immediate data, and may need a different name for the flag. If it doesn’t include some sort of immediate data, need to figure out how to signal the context to the target. FI_FENCE causes a fence on the TARGET SIDE, which guarantees that previous writes with the same R_KEY will be made durable before executing the write fenced with the same R_KEY. There is some question as to whether writes coming after the fence could pass the fenced write.
· Ordering and Completion semantics
· Any fi_writes that don’t take the previous flags cannot be used for PMEM.
· Ordering applies only to operations on a given connection, there is no notion of ordering between connections, or between regions registered with different R_keys. There are no ordering guarantees in the absence of the FI_FENCE flag, even for writes on the same connection to the same R_key region. The ordering semantics should remain identical to the existing semantic.
· Today, there is no mechanism for guaranteeing ordering between writes to two different regions. This may be a problem for the case e.g. where the first write writes a blob of data and a second write is used to update pointers, and they are in different memory regions.
· Open issues
· Ordering – does the FI_FENCE impact subsequent writes or not? One point of view is that a fence marks a point in time, everything before the fence gets completed before any subsequent writes are written. Needs some work here.
· Should an FI_FENCE be allowed to force ordering on a connection basis, irrespective of memory region?
[bookmark: _GoBack]
Next Agenda – 7/05/16
· Continue walking through the Intel proposal for changes to the RDMA to support PM.

Webex Recording:

Next regular telecom:
Next meeting: Tuesday, 6/21/16
8am-9am Pacific daylight time

NOTE: We have switched over to using Webex (courtesy of Cisco). The URL for joining meetings is:
Join WebEx meeting

Join by phone
+1-866-432-9903 Call-in toll-free number (US/Canada)
+1-408-525-6800 Call-in toll number (US/Canada)
Access code: 201 212 241
