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Bonding (Link Aggregation) 

• Bond together multiple physical links into a 

single aggregate logical link 

 

• Motivation 

– Aggregate bandwidth (active-active) 

• Distribute communication flows across all active links 

– High availability (active-backup) 

• If a link goes down, reassign traffic to remaining links 

 

• Can we do the same for HCAs? 
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Link-level Bonding 

• Example: Ethernet link aggregation 

• Typically accomplished by a “Bonding” 
pseudo network interface 

• Placed between the L3/4 stack and 
physical interfaces 
– Multiplexes packets across stateless 

network interfaces 

– Transparent to higher levels of the stack 

– Transport is implemented in SW 

 

• RDMA challenge 
– Transport implemented at stateful network 

interfaces (HCAs) 
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Session-level Bonding 

• Example: iSCSI 

• Initiator establishes a session with Target 
– Session may comprise multiple TCP flows 

• Connections are completely 
encapsulated within the iSCSI session 
– OS issues SCSI commands 

• Alternatively, multiple sessions may be 
created to the same target/LUN 
– May be presented as single logical LUN by 

multi-path SW 

 

• RDMA challenge 
– Transport connections visible to ULPs 

– Multiple RDMA consumers 
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Idea: Transport-level Bonding 

• Provided by a pseudo-HCA (vHCA) 

• Applications open virtual resources 
– vPDs, vQPs, vSRQs, vCQs, vMRs 

– Mapped to physical resources by vHCA 

• Namespace translated on the fly 
– Similar to transparent RDMA migration 

• IBM/OSU “Nomad” paper 

• VMware vRDMA 

• Oracle live-migration prototype 

 

• Link aggregation 
– Distribute QPs across HCAs 

– Optionally bond different HCA types 

– Upon failover 
• Reconnect over a different device/port 

• Continue traffic from the point of failure 

– Transparent migration is a special HA case 
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Requirements 

• Support aggregate across different physical HCAs 

– Optionally even different device types 

• HW independent Bonding driver 

• Strict semantics 

– Adhere to transport message ordering guarantees 

– Global visibility of all IO operations 

• Transparent to consumers 

– Including failover events 

• High performance 
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Design 

• User-space solution 
– Bond driver is a Verbs provider 

– Uses RDMACM internally 
• To open connections 

• Negotiate state using private data 

• IP addressing 
– GID = IP 

– QPN = Port number 

– HCA identity = alias IP 

• 1:1 virtualphysical QP mapping 
– Leverage HW ordering guarantees 

– Zero copy messages 

• Fast path done in app context 
– Post_Send(), Post_Recv(), PollCQ() 
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RDMA Bond 

Object Relations (Example) 
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Posting WRs 

• If vQP is not in a suitable state or virtual queue is full 
– Return immediate error 

• Enqueue WR in virtual Queue 

• If associated HW Send / Receive queue is full 
– Return with success 

• For Sends 
– If connection is not active 

• Schedule (re)connection and return with success 

– For UD 
• Resolve AH and remote QPN (if not already cached) 

– For RDMA 
• Resolve RKey (if not already cached) 

• For Receives 
– If connection is not active, return with success 

• Translate local SGE 

• Post to HW 
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Polling Completions 

• Poll next HW CQ associated with vCQ 

• If not empty, process according to status 
– Case IBV_WC_RETRY_EXC_ERR 

• Schedule reconnection for associated vQP 

• Ignore completion 

– Case IBV_WC_WR_FLUSH_ERR 
• Ignore completion 

– Case IBV_WC_SUCCESS 
• Report successful completion 

– Default (any other error) 
• Modify vQP to error 

• Report erroneous completion 

• Add corresponding virtual Queue to CQ error list 

• Poll next virtual queue on error list 

• If it has in-flight WQEs 
– Generate ERROR_FLUSH for next WQE 

• Report CQ empty if none of the above applies 
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RC Failure Recovery 

• Re-establish connection 
– Over any active link and device 

• Negotiate last committed operations 
– Generate corresponding completions 

• Rewind physical queues 
– Resume operation 
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RC Failure Recovery 

March 30 – April 2, 2014 #OFADevWorkshop 13 

Send 
Queue 

Receive 
Queue 

virtual 

producer 

Virtual 

consumer 

Physical 

producer 

virtual 

producer 

Virtual 

consumer 

Physical 

producer 

• Re-establish connection 
– Over any active link and device 

• Negotiate last committed operations 
– Generate corresponding completions 

• Rewind physical queues 
– Resume operation 

 



RC Failure Recovery 
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Implementation (Ongoing) 

• Current status 
– POC implementation 

– Supported objects 

• CQs 

• PDs 

• RC QPs 

• MRs 

– Supported operations 

• Resource manipulation 

• Send-receive data traffic 

– QPs limited to single link 

• Tackle transient link failure 

 
 

• Next steps 
– Complete Verbs 

coverage 

– RDMACM integration 

– Multi-link recovery 

• Continuously negotiate 
active links 

– Aggregation schemes 

• HA 

• RR 

• Static load balancing 

• Dynamic load balancing 

March 30 – April 2, 2014 #OFADevWorkshop 17 



Summary 

• Bonding solution for stateful RDMA devices 
– HW agnostic 

– Aggregates ports from different devices 

– Communicating peers must run the Bonding driver 

• Out-of-band protocol via CM MADs 

• Supports 
– High availability 

– Aggregate BW 

– Load balancing 

– Transparent migration 

• Efficient user-space implementation 
– Could be extended to the kernel in a similar manner 
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