

RDMA Bonding

Liran Liss Mellanox Technologies

Transport-level bonding

- RDMA bonding design
- Recovering from failure
- Implementation

Agenda

Introduction

Bonding (Link Aggregation)

- Bond together multiple physical links into a single aggregate logical link
- Motivation
 - Aggregate bandwidth (active-active)
 - Distribute communication flows across all active links
 - High availability (active-backup)
 - If a link goes down, reassign traffic to remaining links
- Can we do the same for HCAs?

Link-level Bonding

- Example: Ethernet link aggregation
- Typically accomplished by a "Bonding" pseudo network interface
- Placed between the L3/4 stack and physical interfaces
 - Multiplexes *packets* across *stateless* network interfaces
 - Transparent to higher levels of the stack
 - Transport is implemented in SW
- RDMA challenge
 - Transport implemented at stateful network interfaces (HCAs)

Session-level Bonding

- Example: iSCSI
- Initiator establishes a session with Target
 - Session may comprise multiple TCP flows
- Connections are completely encapsulated within the iSCSI session
 – OS issues SCSI commands
- Alternatively, multiple sessions may be created to the same target/LUN
 - May be presented as single logical LUN by multi-path SW
- RDMA challenge
 - Transport connections visible to ULPs
 - Multiple RDMA consumers

Idea: Transport-level Bonding

- Provided by a pseudo-HCA (vHCA)
- Applications open virtual resources
 - vPDs, vQPs, vSRQs, vCQs, vMRs
 - Mapped to physical resources by vHCA
- Namespace translated on the fly
 - Similar to transparent RDMA migration
 - IBM/OSU "Nomad" paper
 - VMware vRDMA
 - Oracle live-migration prototype
- Link aggregation
 - Distribute QPs across HCAs
 - Optionally bond different HCA types
 - Upon failover
 - Reconnect over a different device/port
 - Continue traffic from the point of failure
 - Transparent migration is a special HA case

- Support aggregate across different physical HCAs
 - Optionally even different device types
- HW independent Bonding driver
- Strict semantics
 - Adhere to transport message ordering guarantees
 - Global visibility of all IO operations
- Transparent to consumers
 - Including failover events
- High performance

March 30 – April 2, 2014

Design

IP addressing

- GID = IP

- QPN = Port number
- HCA identity = alias IP
- 1:1 virtual → physical QP mapping
 - Leverage HW ordering guarantees
 - Zero copy messages
- Fast path done in app context
 - Post_Send(), Post_Recv(), PollCQ()

- Bond driver is a Verbs provider
- Uses RDMACM internally
 - To open connections
 - Negotiate state using private data

Object Relations (Example)

March 30 – April 2, 2014

#OFADevWorkshop

9

Posting WRs

- If vQP is not in a suitable state or virtual queue is full
 - Return immediate error
- Enqueue WR in virtual Queue
- If associated HW Send / Receive queue is full
 - Return with success
- For Sends
 - If connection is not active
 - Schedule (re)connection and return with success
 - For UD
 - Resolve AH and remote QPN (if not already cached)
 - For RDMA
 - Resolve RKey (if not already cached)
- For Receives
 - If connection is not active, return with success
- Translate local SGE
- Post to HW

Polling Completions

- Poll next HW CQ associated with vCQ
- If not empty, process according to status
 - Case IBV_WC_RETRY_EXC_ERR
 - Schedule reconnection for associated vQP
 - Ignore completion
 - Case IBV_WC_WR_FLUSH_ERR
 - Ignore completion
 - Case IBV_WC_SUCCESS
 - Report successful completion
 - Default (any other error)
 - Modify vQP to error
 - Report erroneous completion
 - Add corresponding virtual Queue to CQ error list
- Poll next virtual queue on error list
- If it has in-flight WQEs
 - Generate ERROR_FLUSH for next WQE
- Report CQ empty if none of the above applies

- Re-establish connection
 - Over any active link and device
- Negotiate last committed operations
 - Generate corresponding completions
- Rewind physical queues
 - Resume operation

- Re-establish connection
 - Over any active link and device
- Negotiate last committed operations
 - Generate corresponding completions
- Rewind physical queues
 - Resume operation

- Re-establish connection
 - Over any active link and device
- Negotiate last committed operations
 - Generate corresponding completions
- Rewind physical queues
 - Resume operation

- Re-establish connection
 - Over any active link and device
- Negotiate last committed operations
 - Generate corresponding completions
- Rewind physical queues
 - Resume operation

- Re-establish connection
 - Over any active link and device
- Negotiate last committed operations
 - Generate corresponding completions
- Rewind physical queues
 - Resume operation

Implementation (Ongoing)

- Current status
 - POC implementation
 - Supported objects
 - CQs
 - PDs
 - RC QPs
 - MRs
 - Supported operations
 - Resource manipulation
 - Send-receive data traffic
 - QPs limited to single link
 - Tackle transient link failure

- Next steps
 - Complete Verbs coverage
 - RDMACM integration
 - Multi-link recovery
 - Continuously negotiate active links
 - Aggregation schemes
 - HA
 - RR
 - Static load balancing
 - Dynamic load balancing

- Bonding solution for stateful RDMA devices
 - HW agnostic
 - Aggregates ports from different devices
 - Communicating peers must run the Bonding driver
 - Out-of-band protocol via CM MADs
- Supports
 - High availability
 - Aggregate BW
 - Load balancing
 - Transparent migration
- Efficient user-space implementation
 - Could be extended to the kernel in a similar manner

Thank You

