
RDMA Bonding 

Liran Liss 

Mellanox Technologies 



Agenda 

• Introduction 

• Transport-level bonding 

• RDMA bonding design 

• Recovering from failure 

• Implementation 

 

March 30 – April 2, 2014 #OFADevWorkshop 2 



Bonding (Link Aggregation) 

• Bond together multiple physical links into a 

single aggregate logical link 

 

• Motivation 

– Aggregate bandwidth (active-active) 

• Distribute communication flows across all active links 

– High availability (active-backup) 

• If a link goes down, reassign traffic to remaining links 

 

• Can we do the same for HCAs? 

March 30 – April 2, 2014 #OFADevWorkshop 3 



Link-level Bonding 

• Example: Ethernet link aggregation 

• Typically accomplished by a “Bonding” 
pseudo network interface 

• Placed between the L3/4 stack and 
physical interfaces 
– Multiplexes packets across stateless 

network interfaces 

– Transparent to higher levels of the stack 

– Transport is implemented in SW 

 

• RDMA challenge 
– Transport implemented at stateful network 

interfaces (HCAs) 

 

 
March 30 – April 2, 2014 #OFADevWorkshop 4 

netdev1 netdev2 

Bonding 

IP 

TCP UDP 

Sockets 

Application 

subnet1 

Packets 



Session-level Bonding 

• Example: iSCSI 

• Initiator establishes a session with Target 
– Session may comprise multiple TCP flows 

• Connections are completely 
encapsulated within the iSCSI session 
– OS issues SCSI commands 

• Alternatively, multiple sessions may be 
created to the same target/LUN 
– May be presented as single logical LUN by 

multi-path SW 

 

• RDMA challenge 
– Transport connections visible to ULPs 

– Multiple RDMA consumers 

March 30 – April 2, 2014 #OFADevWorkshop 5 

SCSI subsystem 

iSCSI HBA 

I-T Session 

TCP1 TCP2 

netdev1 netdev2 

SCSI CMDs 

subnet1 



Idea: Transport-level Bonding 

• Provided by a pseudo-HCA (vHCA) 

• Applications open virtual resources 
– vPDs, vQPs, vSRQs, vCQs, vMRs 

– Mapped to physical resources by vHCA 

• Namespace translated on the fly 
– Similar to transparent RDMA migration 

• IBM/OSU “Nomad” paper 

• VMware vRDMA 

• Oracle live-migration prototype 

 

• Link aggregation 
– Distribute QPs across HCAs 

– Optionally bond different HCA types 

– Upon failover 
• Reconnect over a different device/port 

• Continue traffic from the point of failure 

– Transparent migration is a special HA case 

 

 

 
March 30 – April 2, 2014 #OFADevWorkshop 6 

subnet2 subnet1 

RDMA HAL and services 

Application 

IB HCA 
RoCE 
HCA 

Bonding HCA driver 

Verbs 



Requirements 

• Support aggregate across different physical HCAs 

– Optionally even different device types 

• HW independent Bonding driver 

• Strict semantics 

– Adhere to transport message ordering guarantees 

– Global visibility of all IO operations 

• Transparent to consumers 

– Including failover events 

• High performance 

March 30 – April 2, 2014 #OFADevWorkshop 7 



Design 

• User-space solution 
– Bond driver is a Verbs provider 

– Uses RDMACM internally 
• To open connections 

• Negotiate state using private data 

• IP addressing 
– GID = IP 

– QPN = Port number 

– HCA identity = alias IP 

• 1:1 virtualphysical QP mapping 
– Leverage HW ordering guarantees 

– Zero copy messages 

• Fast path done in app context 
– Post_Send(), Post_Recv(), PollCQ() 

 

 

 
March 30 – April 2, 2014 #OFADevWorkshop 8 

Vendor 

driver2 

libibvers 

Vendor 

driver1 

RDMA 

bond 

Kernel drivers 

rdmacm 

Application 

U 

K 



RDMA Bond 

Object Relations (Example) 

March 30 – April 2, 2014 #OFADevWorkshop 9 

vMR1 vPD1 

HCA2 

PD24 

QP9 

vQP1 

vRQ 

Connection 

RDMA ID 

Listener 

RDMA ID 

MR2 

HCA1 

PD83 

CQ69 MR2 

vSQ 

vMR2 

vQP2 

vRQ 

Connection 

RDMA ID 

Listener 

RDMA ID 
vSQ 

QP3 CQ17 

vCQ1 

vRKey RKey 

1 635 

2 145 

vRKey RKey 

1 201 

2 36 



Posting WRs 

• If vQP is not in a suitable state or virtual queue is full 
– Return immediate error 

• Enqueue WR in virtual Queue 

• If associated HW Send / Receive queue is full 
– Return with success 

• For Sends 
– If connection is not active 

• Schedule (re)connection and return with success 

– For UD 
• Resolve AH and remote QPN (if not already cached) 

– For RDMA 
• Resolve RKey (if not already cached) 

• For Receives 
– If connection is not active, return with success 

• Translate local SGE 

• Post to HW 
 March 30 – April 2, 2014 #OFADevWorkshop 10 



Polling Completions 

• Poll next HW CQ associated with vCQ 

• If not empty, process according to status 
– Case IBV_WC_RETRY_EXC_ERR 

• Schedule reconnection for associated vQP 

• Ignore completion 

– Case IBV_WC_WR_FLUSH_ERR 
• Ignore completion 

– Case IBV_WC_SUCCESS 
• Report successful completion 

– Default (any other error) 
• Modify vQP to error 

• Report erroneous completion 

• Add corresponding virtual Queue to CQ error list 

• Poll next virtual queue on error list 

• If it has in-flight WQEs 
– Generate ERROR_FLUSH for next WQE 

• Report CQ empty if none of the above applies 

 March 30 – April 2, 2014 #OFADevWorkshop 11 



RC Failure Recovery 

• Re-establish connection 
– Over any active link and device 

• Negotiate last committed operations 
– Generate corresponding completions 

• Rewind physical queues 
– Resume operation 

 

March 30 – April 2, 2014 #OFADevWorkshop 12 

Send 
Queue 

Receive 
Queue 

virtual 

producer 

Virtual 

consumer 

Physical 

producer 

virtual 

producer 

Virtual 

consumer 

Physical 

producer 



RC Failure Recovery 

March 30 – April 2, 2014 #OFADevWorkshop 13 

Send 
Queue 

Receive 
Queue 

virtual 

producer 

Virtual 

consumer 

Physical 

producer 

virtual 

producer 

Virtual 

consumer 

Physical 

producer 

• Re-establish connection 
– Over any active link and device 

• Negotiate last committed operations 
– Generate corresponding completions 

• Rewind physical queues 
– Resume operation 

 



RC Failure Recovery 

March 30 – April 2, 2014 #OFADevWorkshop 14 

Send 
Queue 

Receive 
Queue 

virtual 

producer 

Virtual 

consumer 

virtual 

producer 

Virtual 

consumer 

• Re-establish connection 
– Over any active link and device 

• Negotiate last committed operations 
– Generate corresponding completions 

• Rewind physical queues 
– Resume operation 

 



RC Failure Recovery 

March 30 – April 2, 2014 #OFADevWorkshop 15 

Send 
Queue 

Receive 
Queue 

virtual 

producer 

Virtual 

consumer 

virtual 

producer 

Virtual 

consumer 

• Re-establish connection 
– Over any active link and device 

• Negotiate last committed operations 
– Generate corresponding completions 

• Rewind physical queues 
– Resume operation 

 



RC Failure Recovery 

March 30 – April 2, 2014 #OFADevWorkshop 16 

Send 
Queue 

Receive 
Queue 

virtual 

producer 

Virtual 

consumer 

Physical 

producer 

virtual 

producer 

Virtual 

consumer 

Physical 

producer 

• Re-establish connection 
– Over any active link and device 

• Negotiate last committed operations 
– Generate corresponding completions 

• Rewind physical queues 
– Resume operation 

 



Implementation (Ongoing) 

• Current status 
– POC implementation 

– Supported objects 

• CQs 

• PDs 

• RC QPs 

• MRs 

– Supported operations 

• Resource manipulation 

• Send-receive data traffic 

– QPs limited to single link 

• Tackle transient link failure 

 
 

• Next steps 
– Complete Verbs 

coverage 

– RDMACM integration 

– Multi-link recovery 

• Continuously negotiate 
active links 

– Aggregation schemes 

• HA 

• RR 

• Static load balancing 

• Dynamic load balancing 

March 30 – April 2, 2014 #OFADevWorkshop 17 



Summary 

• Bonding solution for stateful RDMA devices 
– HW agnostic 

– Aggregates ports from different devices 

– Communicating peers must run the Bonding driver 

• Out-of-band protocol via CM MADs 

• Supports 
– High availability 

– Aggregate BW 

– Load balancing 

– Transparent migration 

• Efficient user-space implementation 
– Could be extended to the kernel in a similar manner 

March 30 – April 2, 2014 #OFADevWorkshop 18 



#OFADevWorkshop 

Thank You 


