
Signature Verbs Extension

Richard L. Graham

Data Integrity Field (DIF)

• Used to provide data block integrity check capabilities (CRC)
for block storage (SCSI)

• Proposed by the T10 committee

• DIX extends the support to main memory

• Motivation:
– Data integrity checks are included in:

• memory bus

• I/O bus (PCI-e)

• internal chips

• RAID controller within arrays

• network packet interfaces

– Missing data protection: storage controller
• iSCSI can DMA wrong pages from memory and calculate checksum on

these pages

• Array may receive incorrect data and use it to generate RAID parity
blocks

• Disks may write to the wrong logical block

March 30 – April 2, 2014 #OFADevWorkshop 2

What is DIF

• The standard specify an additional 8 byte field designated for data integrity/protection for
each data block (usually of size 512 bytes but not a must).

• GUARD tag (Logical Block Guarding):
– 16-bit CRC covering the hardware sector

– Regardless of sector size

– 4096 KB sectors appear only to gain momentum in lower end

• REFERENCE tag (Misdirected writes):
– 4 bytes – depend on protection type

– For Type 1 protection, REF tag contains lower 32 bits of LBA

– For Type 2 protection, REF tag has to match LBA in CDB + N

– Wraps at 2TB with 512 byte sectors, 16TB with 4KB

• APPLICATION tag (Up for grabs):
– 2 bytes per sector

– Ownership negotiated with target

 3

4

System Architecture

Host Machine

IB

Target Machine

FC/SATA/SCSI

Storage

Memory

Memory

Initiator with

*DIF Offload Support

Host Machine

Memory

Legacy Initiator

DIF Enabled Target

*DIF Offload Support

Data

Meta Data (DIF)

5

System Architecture

6

System Architecture

Signature Verbs - Actions

1. Allocate Signature enabled memory regions

 mr_init_attr.flags |= IB_MR_SIGNATURE_EN;

 sig_mr = ib_create_mr(pd, &mr_init_attr);

2. Set QP as Signature enabled

 qp_init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;

 sig_qp = ib_create_qp(pd, &qp_init_attr);

3. Register Signature MR (send work request IB_WR_REG_SIG_MR)

 sig_wr.opcode = IB_WR_REG_SIG_MR;

 sig_wr.sg_list = data_sge; /* Data buffer */

 sig_wr.wr.sig_handover.prot = prot_sge; /* protection buffer */

 sig_wr.wr.sig_handover.sig_attrs = &sig_attrs; /* signature attributes struct */

 sig_wr.wr.sig_handover.sig_mr = pi_ctx->sig_mr; /* Signature enabled MR */

 ret = ib_post_send(qp, sig_wr, &bad_wr);

3.5. do RDMA (data-transfer) – Leverage existing verbs support

4. Check Signature status

 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);

7

Leverage Extended User Mode

Memory Registration
• Memory Key Creation: Support combining contiguous registered memory regions into a

single memory region. H/W treats them as a single contiguous region (and handles the

non-contiguous regions)

• For a given memory region, supports non-contiguous access to memory, using a regular

structure representation – base pointer, element length, stride, repeat count.

– Can combine these from multiple different memory keys

• Memory descriptors are created by posting WQE’s to fill in the memory key

• Supports local and remote non-contiguous memory access

– Eliminates the need for some memory copies

Combining Contiguous Memory

Regions

Non-Contiguous Memory

Access – Regular Access

Memory

Wire

Non-Contiguous Memory

Access – Regular Access

March 30 – April 2, 2014 #OFADevWorkshop 11

Wire Memory

12

Example in SCSI transport

#OFADevWorkshop

Thank You

