MPI Requirements
of the Network Layer

Presented to the OpenFabrics libfabric Working Group
January 28,2014

Community feedback assembled
by Jeff Squyres, Cisco Systems
Presented by
Nathan Hjelm, Los Alamos National Laboratory




Many thanks to the contributors
(1in no particular order)

ETZ Zurich

* Torsten Hoefler

Sandia National Labs
* Ron Brightwell

* Brian Barrett

* Ryan Grant

IBM

¢ Chulho Kim

* Carl Obert

* Michael Blocksome
* Perry Schmidt

Cisco Systems

< Jeff Squyres

* Dave Goodell
* Reese Faucette
* Cesare Cantu

* Upinder Malhi

Oak Ridge National Labs
* Scott Atchley
* Pavel Shamis

Argonne National Labs
¢ Jeff Hammond




Many thanks to the contributors
(1in no particular order)

Intel
* Sayantan Sur
* Charles Archer

Cray
* Krishna Kandalla

Mellanox
* Devendar Bureddy

SGI
* Michael Raymond

AMD
- Brad Benton

Microsoft
- Fab Tillier

U. Edinburgh / EPCC

- Dan Holmes

U. Alabama Birmingham
+ Tony Skjellum

- Amin Hassani

+ Shane Farmer




Quick MPI overview

High-level abstraction API

* No concept of a connection

All communication:
* Is reliable
* Has some ordering rules

* Is comprised of typed messages

Peer address 1s (communicator, integer) tuple

* l.e., virtualized

* Specifies a process, not a server | network endpoint
Slide




Quick MPI overview

e Communication modes
Blocking and non-blocking (polled completion)
Point-to-point: two-sided and one-sided
Collective operations: broadcast, scatter, reduce, ...etc.

...and others, but those are the big ones
* Async. progression is required/strongly desired

* Message buffers are provided by the application

They are not “special” (e.g., registered)




Quick MPI overview

* MPI specification

* Governed by the MPI Forum standards body
* Currently at MPI-3.0

* MPI implementations
* Software + hardware implementation of the spec
* Some are open source, some are closed source

* Generally don’t care about interoperability (e.g., wire
protocols)




MPI 1s a large community

* Community feedback represents union of:
* Different viewpoints
* Different MPI implementations

* Different hardware perspectives

e ...and not all agree with each other

* For example...




Different MPI camps

Those who want
high level interfaces

* Do not want to see memory
registration

* Want tag matching
E.g.,PSM

Trust the network layer to do
everything well under the
cCovers

Those who want
low level interfaces

Want to have good memory
registration infrastructure

Want direct access to
hardware capabilities

Want to fully implement MPI
interfaces themselves

Or, the MPI implementers are
the kernel / firmware /hardware
developers




Be careful what you ask for...

e ...because you just got it

e Members of the MPI Forum
would like to be involved in
the libfabric design on an
ongoing basis

Can we get an MPI libfabric
listserv?




Basic things MPI needs

Messages (not streams)

Efficient API
* Allow for low latency / high bandwidth
* Low number of instructions in the critical path

* Enable “zero copy”
Separation of local action initiation and completion

One-sided (including atomics and shared locks) and two-sided
semantics

No requirement for communication buffer alignment (!!!)




Basic things MPI needs

* Asynchronous progress
independent of API calls

* Including asynchronous
progress from multiple
consumers (e.g., MPI and
PGAS in the same process)

* Preferably via dedicated
hardware

Progress Also causes
of these progress
of these




Basic things MPI needs

* Scalable communications with millions of peers
* With both one-sided and two-sided semantics
* Think of MPI as a fully-connected model
(even though it usually isn’t implemented that way)

* Today, runs with 3 million MPI processes in a job




Things MPI likes in verbs

(all the basic needs from previous slide)

Different modes of communication
* Reliable vs. unreliable

* Scalable connectionless communications (i.e., UD)
Specify peer read/write address (i.e., RDMA)

RDMA write with immediate (*)

* ...but we want more (more on this later)




Things MPI likes in verbs

Ability to re-use (short/inline) buffers immediately
Polling and OS-native/fd-based blocking QP modes

Discover devices, ports, and their capabilities (*)

...but let’s not tie this to a specific hardware model
Scatter / gather lists for sends

Atomic operations (*)

...but we want more (more on this later)




Things MPI likes in verbs

* (Can have multiple consumers Process

in a single process

* API handles are independent of Library A Library B

each other Handle Handle

A B

Network hardware




Things MPI likes in verbs

Verbs does not:

* Require collective initialization across multiple processes
Require peers to have the same process image
Restrict completion order vs. delivery order
Restrict source/target address region (stack, data, heap)

Require a specific wire protocol (*)
* ...but it does impose limitations, e.g., 40-byte GRH UD header




Things MPI likes in verbs

Ability to connect to “unrelated” peers
Cannot access peer (memory) without permission

Ability to block while waiting for completion

...assumedly without consuming host CPU cycles

Cleans up everything upon process termination

E.g., kernel and hardware resources are released




Other things MPI wants
(described as verbs improvements)

e MTU is an int (not an enum)

* Specify timeouts to connection requests

...or have a CM that completes connections
asynchronously

* All operations need to be non-blocking, including:
Address handle creation
Communication setup / teardown

Memory registration / deregistration




Other things MPI wants
(described as verbs improvements)

* Specify buffer/length as function parameters
Specified as struct requires extra memory accesses

...more on this later

* Ability to query how many credits currently available in
a QP

To support actions that consume more than one credit

* Remove concept of “queue pair”

Have standalone send channels and receive channels




Other things MPI wants
(described as verbs improvements)

Completion at target for an RDMA write

Have ability to query if loopback communication is
supported

Clearly delineate what functionality must be supported
vs. what 1s optional

Example: MPI provides (almost) the same functionality
everywhere, regardless of hardware / platform

Verbs functionality 1s wildly different for each provider




Other things MPI wants
(described as verbs improvements)

* Better ability to determine causes of errors

e In verbs:

Different providers have different (proprietary)
interpretations of various error codes

Difficult to find out why ibv_post_send() or ibv_poll_cq()
failed, for example

* Perhaps a better strerr() type of functionality (that can
also obtain provider-specific strings)?




Other things MPI wants:
Standardized high-level interfaces

* Examples:
Tag matching
MPI non-blocking collective operations (TBD)
Remote atomic operations
...CtC.

The MPI community wants input in the design of these
interfaces

* Divided opinions from MPI community:
Providers must support these interfaces, even if emulated

Run-time query to see which interfaces are supported

Slide




Other things MPI wants:
Vendor-specific interfaces

* Direct access to vendor-specific features
Lowest-common denominator API is not always enough
Allow all providers to extend all parts of the API

* Implies:
Robust API to query what devices and providers are
available at run-time (and their various versions, etc.)

Compile-time conventions and protections to allow for safe
non-portable codes

* This is a radical difference from verbs




Core libtfabric functionality

Application (e.g., MPI)

\ Direct function

libfabric core calls to libfabric

P TR
Provider Provider
A B




Example options for direct access to
vendor-specific functionality

Application (e.g., MPI)

Example 1:

Access to Provider A

provider A extensions
extensions

without going
through libfabric
core

libfabric core

Provider Provider
A B




Example options for direct access to
vendor-specific functionality

Application (e.g., MPI)

Example 2:

Access to provider B
libfabric core extensions via “pass
through” functionality
in libfabric

I'OVICI'

B with

extensions

Provider
A




Other things MPI wants:
Regarding memory registration

* Run-time query: 1s memory registration 1s necessary?

I.e., explicit or implicit memory registration

* If explicit

Need robust notification of involuntary memory de-
registration (e.g., munmap)

* If the cost of de/registration were “free”’, much of this
debate would go away ©




Other things MPI wants:
Regarding fork() behavior

e In child:

All memory is accessible (no side effects)
Network handles are stale / unusable

Can re-initialize network API (i.e., get new handles)

* In parent:
All memory 1s accessible
Network layer is still fully usable

Independent of child process effects




Other things MPI wants

* If network header knowledge is required:
Provide a run-time query
Do not mandate a specific network header

E.g., incoming verbs datagrams require a GRH header

* Request ordered vs. unordered delivery

Potentially by traffic type (e.g., send/receive vs. RDMA)

* Completions on both sides of a remote write




Other things MPI wants

* Allow listeners to request a specific network address

* Similar to TCP sockets asking for a specific port

* Allow receiver providers to consume buffering directly
related to the size of incoming messages

* Example: “slab” buffering schemes




Other things MPI wants

Generic completion types. Example:
© Aggregate completions

* Vendor-specific events

Out-of-band messaging




Other things MPI wants

Noncontiguous sends, receives, and RDMA opns.

Page size irrelevance

* Send / receive from memory, regardless of page size

Access to underlying performance counters
* For MPI implementers and MPI-3 “MPI_T” tools

Set / get network quality of service




Other things MPI wants:
More atomic operations

Datatypes (minimum): int64_t, uint64_t, int32_t, uint32_t
Would be great: all C types (to include double complex)
Would be ok: all <stdint.h> types
Don’t require more than natural C alignment

Operations (minimum)
accumulate, fetch-and-accumulate, swap, compare-and-swap

Accumulate operators (minimum)
add, subtract, or, xor, and, min, max

Run-time query: are these atomics coherent with the host?
If support both, have ability to request one or the other

Slide




Other things MPI wants:
MPI RMA requirements

e Offset-based communication (not address-based)

Performance improvement: potentially reduces cache
misses associated with offset-to-address lookup

* Programmatic support to discover if VA based RMA
performs worse/better than offset based

Both models could be available in the API
But not required to be supported simultaneously

* Aggregate completions for MPI Put/Get operations
Per endpoint
Per memory region




Other things MPI wants:
MPI RMA requirements

Ability to specify remote keys when registering

Improves MPI collective memory window allocation
scalability

Ability to specify arbitrary-sized atomic ops
Run-time query supported size

Ability to specify/query ordering and ordering limits of
atomics
Ordering mode: rar, raw, war and waw

Example: “rar” — reads after reads are ordered




“New,” but becoming important

* Network topology discovery and awareness
...but this 1s (somewhat) a New Thing

Not much commonality across MPI implementations

* Would be nice to see some aspect of libfabric provide
fabric topology and other/meta information

Need read-only access for regular users




API design considerations

With no tag matching, MPI frequently sends / receives
two buffers

(header + payload)
Optimize for that

MPI sometimes needs thread safety, sometimes not

May need both in a single process

Support for checkpoint/restart is desirable

Make it safe to close stale handles, reclaim resources




API design considerations

* Do not assume:
Max size of any transfer (e.g., inline)
The memory translation unit is in network hardware
All communication buffers are in main RAM
Onload / offload, but allow for both

API handles refer to unique hardware resources

* Be “as reliable as sockets” (e.g., if a peer disappears)
Have well-defined failure semantics
Have ability to reclaim resources on failure

Slide




Conclusions

* Many different requirements

* High-level, low-level, and vendor-specific interfaces

* The MPI community would like to continue to
collaborate

* Tag matching is well-understood, but agreeing on a
common set of interfaces for them will take work

* Creating other high-level MPI-friendly interfaces (e.g., for
collectives) will take additional work




Thank you!




