On Demand Paging for
User-level Networking

Liran Liss
Mellanox Technologies

Agenda &)

——

————

 Memory registration

« RDMA programming challenges
« On Demand Paging (ODP)

e Page pre-fetching

* |nitial testing

o Future work

 Conclusions

© 2013 Mellanox Technologies

Memory Registration

ALLIANCE

—

e Apps register Memory §\
Regions (MRs) for 10 S
— Referenced memory S
must be part of process
address space at DR
registration time N e
— Memory key returned to 0O | i
identify the MR g
* Registration operation S o
— Pins down the MR et O
— Hands off the virtual to 2
physical mapping to HW =

© 2013 Mellanox Technologies

Memory Registration — &

JDALIP
ENIE)

-

" OPENFABRICS
contihued
e Fast path z

— Applications post IO 8
operations directly to R S)
HCA I “! o o

— HCA accesses memory : ~ 5B
using the translations ! g B
reference | i
memory ke : N

|
|

4

MH
\

© 2013 Mellanox Technologies

Challenges

ALLIANCE

—— - = - — =

—= ————— —— —

e Size of registered memory must fit physical memory
« Applications must have memory locking privileges

o Continuously synchronizing the translation tables
between the address space and the HCA is hard
— Address space changes (malloc, mmap, stack)
— NUMA migration
— fork()

* Registration is a costly operation
— No locality of reference

© 2013 Mellanox Technologies 5

 Requires careful design
« Dynamic registration
— Naive approach induces significant overheads
— Pin-down cache logic is complex and not complete

e Pinned bounce buffers

— Application level memory management
— Copying adds overhead

© 2013 Mellanox Technologies 6

On Demand Paging

MR pages are never pinned by the OS
— Paged in when HCA needs them
— Paged out when reclaimed by the OS

 HCA translation tables may contain non-present
pages
— Initially, a new MR is created with non-present pages
— Virtual memory mappings don’t necessarily exist

© 2013 Mellanox Technologies 7

Semantics

« ODP memory registration
— Specify IBV_ACCESS_ON_DEMAND access flag

* Work request processing

— WQEs in HW ownership must reference mapped memory
 From Post_Send()/Recv() until PollICQ()

— RDMA operations must target mapped memory
— Access attempts to unmapped memory trigger an error

e Transport
— RC semantics unchanged

— UD responder drops packets while page faults are resolved

» Standard semantics cannot be achieved unless wire is back-
pressured

© 2013 Mellanox Technologies 8

Advantages

o Simplified programming

— MPI rendezvous without g nasenething©
dynamic registrations char buf[SIZE];
: WQE wqe;
— No dedicated buffer pools to
manage FillBuf(buf);
wge.sge[0] -addr = buf;
I Taal wge.sge[0] -length = SIZE;
» Practically unlimited e T iy & ST
memory registrations TS
_ . Post_Send(wqge);
— No special privileges are while (1Pol1CQQ);
required ¥

* Physical memory optimized
to hold working set

© 2013 Mellanox Technologies 9

Design &

o Kernel only
— Transparent to applications

e Generic code (ib_core) tasks

— Manage page invalidations
» Register for MMU noaotifier calls
» Provide context for invalidations
» Locate intersection between page invalidations and
MRs
— Support page faults
» Synchronize between invalidations and page faults
» Page-in user pages and map to dma

© 2013 Mellanox Technologies 10

Design — continued &

e ———

* Driver code (miIx4 core/ib) tasks

— Process page faults
« Catch and classify HW page faults

» Provide context for page faults
— Per-QP work_struct for requester/responder

— Handle HW page invalidations

© 2013 Mellanox Technologies 11

Data Structures &)

/ ib_core \

i umem
Page list

mmu_notifier
handlers

Per user
virt_addr->umem
interval tree y —

Y

mix4_core / mix4_ib

1
! 1
! 1
! 1
! 1
' 1
\ 2
N a
~ e
R o

4)

HCA

- J

© 2013 Mellanox Technologies 12

Page-in Flow

o —

-

mmu_notifier
handlers

ib_core

Per user
virt_addr->umem

L
p

PR Ny S R Ay Ry Ry Ry Ry Ry Ry K R R R A A R R A XY .
4 N
7’ N
A \

interval tree .—

3. Request
pages

4. Get pages
+ map to
DMA

2. Look up
MR

/ \

\
1. Page |
fault event -

© 2013 Mellanox Technologies

N

6. Resume
QP

A\

5. Update HW
mappings

A

13

Invalidation Flow &)

] 6. Unmap DMA

= and return
1. Page / ! ib_core | [™

invalidation mu_notifier

handlers ' Per user umem .3. Rt?QU(?st
o virt_addr>umem Page list invalidation
= 00 l_Jp interval tree p—"" ! DMA i
intersecting ; ﬂ
MRs P 7 :
mix4_c 5..Ackn.owl.edge ’
invalidation
Key >MR |
tree y
< 4. Flush N
(HW caches
HCA S J
_ J

© 2013 Mellanox Technologies 14

Page Pre-fetching

 New Verb for pre-fetching pages
 Uses
— Warming up new memory mappings
— MPI rendezvous optimization
— UD responder optimization

© 2013 Mellanox Technologies 15

Initial Testing

« ODP support

— Implemented all RC transport flows for IB and RoCE
* Excluding SRQ and memory windows

— UD over IB and RoCE
— Raw Ethernet QP
* Inter-operability

— Latency of non-ODP applications running concurrently hardly
affected

— Mixed requestors/responders also work well
* Native performance for memory-resident ODP pages

« Page-in performance
— 4K page fault takes approximately 135us
— 4M page fault takes approximately 1ms

© 2013 Mellanox Technologies 16

Execution Time Breakdown (Qj

(Send Requestor) s

4K Page fault (135us total time) 4M Page fault (1ms total time)

0% 2%

2% 0% 0%

1%

B Schedule in B Schedule in

B WQE read B WQE read
B Get User Pages B Get User Pages

B PTE update B PTE update

B TLB flush W TBL flush
m QP resume m QP resume
m Misc = Misc

© 2013 Mellanox Technologies 17

Future work:
Huge MR Support

e Support MRs In the size of TBs
e Implicit ODP
— Register complete application address space up-front
— Effectively eliminate memory registration
 Meta-data size must be a function of currently
mapped memory instead of MR size
— Applies to all data structures (IB core, driver, and HW)

« Memory Windows (MWSs) become the main
vehicle for controlling access rights

© 2013 Mellanox Technologies

Future Work:
Improve OS |ntegrat|on

 Update PTE accessed/dirty bits accordlng to IO
accesses

« Page invalidation batching
— Page eviction in the swapper
— NUMA migration process

 Extend ODP to guest physical->machine
translations for virtualization

© 2013 Mellanox Technologies

Conclusions

« RDMA performance Is great
— But requires careful design
 ODP simplifies RDMA programming and
deployment
— Moves memory management to the OS
— Lifts memory-pinning limits

 ODP does not sacrifice performance or
Interoperability

 ODP eliminates memory registrations!!!
— Coming up soon

© 2013 Mellanox Technologies 20

Thank You

© 2013 Mellanox Technologies

© 2013 Mellanox Technologies

Concurrent Page Faults (Q)

 Each QP has at most 2 concurrent page faults
— Requestor
— Responder

o Faulting QP temporarily suspended until fault is
resolved by SW

— Even if another QP satisfies the fault in the meantime
— Required for correct completion semantics

© 2013 Mellanox Technologies 23

Page-in / Invalidation Races

———

e ——

 |nvalidations may race with page faults

— HW will complete all in-flight memory accesses to an
iInvalidated range before completing the invalidation

— New accesses will trigger a page fault normally

* Page-in requests are not serviced while handling
mmu_ notifier invalidations
— QP is resumed without updating the page tables

— HW will retry access optionally triggering another
page fault

— Simplifies the code considerably

© 2013 Mellanox Technologies 24

Forward Progress

Challenge

— Single MTU-sized packet may refer to multiple S/G entries
In WQEs

— Single RDMA-W transaction may span multiple pages

Forward progress generally not guaranteed

— Pages are not pinned - inherent race with page
Invalidation

— Not any different than CPU accesses

Alleviate by paging-in multiple pages at once
— Read multiple SGEs in WQE page faults
— Pre-fetch large consecutive ranges in RDMA faults

Not an issue In practice

© 2013 Mellanox Technologies 25

	On Demand Paging for User-level Networking
	Agenda
	Memory Registration
	Memory Registration – continued
	Challenges
	Achieving High Performance
	On Demand Paging
	Semantics
	Advantages
	Design
	Design – continued
	Data Structures
	Page-in Flow
	Invalidation Flow
	Page Pre-fetching
	Initial Testing
	Execution Time Breakdown (Send Requestor)
	Future work:�Huge MR Support
	Future Work:�Improve OS integration
	Conclusions
	Thank You
	Backup
	Concurrent Page Faults
	Page-in / Invalidation Races
	Forward Progress

