On Demand Paging for
User-level Networking

Liran Liss
Mellanox Technologies




Agenda &)

——

————

 Memory registration

« RDMA programming challenges
« On Demand Paging (ODP)

e Page pre-fetching

* |nitial testing

o Future work

 Conclusions

© 2013 Mellanox Technologies



Memory Registration

ALLIANCE

—

e Apps register Memory §\
Regions (MRs) for 10 S
— Referenced memory S
must be part of process
address space at DR
registration time N e
— Memory key returned to 0O | i
identify the MR g
* Registration operation S o
— Pins down the MR et O
— Hands off the virtual to 2
physical mapping to HW =

© 2013 Mellanox Technologies



Memory Registration — &

JDALIP
ENIE)

-

" OPENFABRICS
contihued
e Fast path z

— Applications post IO 8
operations directly to R S )
HCA I “! o o

— HCA accesses memory : ~ 5B
using the translations ! g B
reference | i
memory ke : N

|
|

4

MH
\

© 2013 Mellanox Technologies



Challenges
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e Size of registered memory must fit physical memory
« Applications must have memory locking privileges

o Continuously synchronizing the translation tables
between the address space and the HCA is hard
— Address space changes (malloc, mmap, stack)
— NUMA migration
— fork()

* Registration is a costly operation
— No locality of reference
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 Requires careful design
« Dynamic registration
— Naive approach induces significant overheads
— Pin-down cache logic is complex and not complete

e Pinned bounce buffers

— Application level memory management
— Copying adds overhead
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On Demand Paging

MR pages are never pinned by the OS
— Paged in when HCA needs them
— Paged out when reclaimed by the OS

 HCA translation tables may contain non-present
pages
— Initially, a new MR is created with non-present pages
— Virtual memory mappings don’t necessarily exist
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Semantics

« ODP memory registration
— Specify IBV_ACCESS_ON_DEMAND access flag

* Work request processing

— WQEs in HW ownership must reference mapped memory
 From Post_Send()/Recv() until PollICQ()

— RDMA operations must target mapped memory
— Access attempts to unmapped memory trigger an error

e Transport
— RC semantics unchanged

— UD responder drops packets while page faults are resolved

» Standard semantics cannot be achieved unless wire is back-
pressured
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Advantages

o Simplified programming

— MPI rendezvous without g nasenething©
dynamic registrations char buf[SIZE];
: WQE wqe;
— No dedicated buffer pools to
manage FillBuf(buf);
wge.sge[0] -addr = buf;
I Taal wge.sge[0] -length = SIZE;
» Practically unlimited e T iy & ST
memory registrations TS
_ . Post_Send(wqge);
— No special privileges are while (1Pol1CQQ);
required ¥

* Physical memory optimized
to hold working set
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Design &

o Kernel only
— Transparent to applications

e Generic code (ib_core) tasks

— Manage page invalidations
» Register for MMU noaotifier calls
» Provide context for invalidations
» Locate intersection between page invalidations and
MRs
— Support page faults
» Synchronize between invalidations and page faults
» Page-in user pages and map to dma
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Design — continued &
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* Driver code (miIx4 core/ib) tasks

— Process page faults
« Catch and classify HW page faults

» Provide context for page faults
— Per-QP work_struct for requester/responder

— Handle HW page invalidations
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Data Structures &)
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Page-in Flow
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Invalidation Flow &)
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Page Pre-fetching

 New Verb for pre-fetching pages
 Uses
— Warming up new memory mappings
— MPI rendezvous optimization
— UD responder optimization
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Initial Testing

« ODP support

— Implemented all RC transport flows for IB and RoCE
* Excluding SRQ and memory windows

— UD over IB and RoCE
— Raw Ethernet QP
* Inter-operability

— Latency of non-ODP applications running concurrently hardly
affected

— Mixed requestors/responders also work well
* Native performance for memory-resident ODP pages

« Page-in performance
— 4K page fault takes approximately 135us
— 4M page fault takes approximately 1ms
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(Send Requestor) s

4K Page fault (135us total time) 4M Page fault (1ms total time)

0% 2%

2% 0% 0%

1%

B Schedule in B Schedule in

B WQE read B WQE read
B Get User Pages B Get User Pages

B PTE update B PTE update

B TLB flush W TBL flush
m QP resume m QP resume
m Misc = Misc

© 2013 Mellanox Technologies 17



Future work:
Huge MR Support

e Support MRs In the size of TBs
e Implicit ODP
— Register complete application address space up-front
— Effectively eliminate memory registration
 Meta-data size must be a function of currently
mapped memory instead of MR size
— Applies to all data structures (IB core, driver, and HW)

« Memory Windows (MWSs) become the main
vehicle for controlling access rights
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Future Work:
Improve OS |ntegrat|on

 Update PTE accessed/dirty bits accordlng to IO
accesses

« Page invalidation batching
— Page eviction in the swapper
— NUMA migration process

 Extend ODP to guest physical->machine
translations for virtualization
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Conclusions

« RDMA performance Is great
— But requires careful design
 ODP simplifies RDMA programming and
deployment
— Moves memory management to the OS
— Lifts memory-pinning limits

 ODP does not sacrifice performance or
Interoperability

 ODP eliminates memory registrations!!!
— Coming up soon
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Thank You
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Concurrent Page Faults (Q)

 Each QP has at most 2 concurrent page faults
— Requestor
— Responder

o Faulting QP temporarily suspended until fault is
resolved by SW

— Even if another QP satisfies the fault in the meantime
— Required for correct completion semantics
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Page-in / Invalidation Races
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 |nvalidations may race with page faults

— HW will complete all in-flight memory accesses to an
iInvalidated range before completing the invalidation

— New accesses will trigger a page fault normally

* Page-in requests are not serviced while handling
mmu_ notifier invalidations
— QP is resumed without updating the page tables

— HW will retry access optionally triggering another
page fault

— Simplifies the code considerably
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Forward Progress

Challenge

— Single MTU-sized packet may refer to multiple S/G entries
In WQEs

— Single RDMA-W transaction may span multiple pages

Forward progress generally not guaranteed

— Pages are not pinned - inherent race with page
Invalidation

— Not any different than CPU accesses

Alleviate by paging-in multiple pages at once
— Read multiple SGEs in WQE page faults
— Pre-fetch large consecutive ranges in RDMA faults

Not an issue In practice
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