

December 2006 DAT Collaborative 1

Application Forward Compatibility to DAT 2.0

Arkady Kanevsky

Abstract
DAT 2.0 is the major version of the DAT specification, and hence does not preserve source level backward
compatibility. This short report outlines the signature changes of existing DAT 1.x APIs in DAT 2.0 APIs
and provides guidance on how to port an application to DAT 2.0. The document consists of two sections.
The first one provides guidance for the uDAPL users, while the second does it for kDAPL users. While
most of the changes are identical for both groups, some are not. It was deemed better to repeat the same
changes in both parts so that Consumers can read only the section which is of interest to them.

It is possible to generate a scripting tool which will do 90% of the port automatically but the DAT
Collaborative decided that it is outside the scope of its work. Open source reference implementation
effort(s) may consider this task.

1 uDAPL

1.1 Structure sizes
Several structures (e.g. dat_dto_completion_event_data, dat_cr_arrival_event_data, dat_lmr_param,
dat_rmr_param, dat_cno_param, dat_ep_param, dat_ep_state) changed in size as new fields were added.
Recompiling will handle the forward compatibility issues arising from memory allocation for the
structures. If an application used a relative position of a field in a structure rather than the field name, then
the source changes required are a lot more elaborate and can not be handled in generic manner.

1.2 DAT_LMR_TRIPLET and DAT_RMR_TRIPLET
The formats of both triplets have been changed but the names of the individual members of the structures
have not. Since pad should not have been used by the code no changes in the code are expected if the fields
were accessed via names and not positions in the structures. Thus, a simple recompile will handle forward
compatibility.

1.3 DAT_RMR_BIND
The dat_rmr_bind signature has been changed with the addition of two new fields, lmr_handle and
va_type. For forward compatibility, the va_type value of DAT_VA_TYPE_VA should be used to represent
an OS Virtual Address. There is no automatic fix for lmr_handle. Applications need to store the LMR
handle returned by dat_lmr_create together with the LMR Context and pass it to the dat_rmr_bind
function.

1.4 DAT_CR_REJECT
dat_cr_reject now supports the local Consumer’s ability to pass private data to a remote Consumer. The
signature of the function has changed and the size of the private data and the pointer to the start of the
private data need to be passed in. The older applications can specify private_data_size of 0, and

December 2006 DAT Collaborative 2

private_data of NULL for forward compatibility. On the requesting side there was already support for
private data in the connection event, therefore no changes are needed for forward compatibility.

1.5 DAT_CNO_QUERY
While the signature of the function has not changed, the format of the dat_cno_param structure which it
returns did change, as well as the dat_cno_param_mask. For forward compatibility, if the call used the
mask value of DAT_CNO_FIELD_AGENT it should be replaced by DAT_CNO_FIELD_PROXY. If code
accessed agent it should be replaced by proxy.agent.

2 kDAPL

2.1 Structure sizes
Several structures (e.g. dat_dto_completion_event_data, dat_cr_arrival_event_data, dat_lmr_param,
dat_rmr_param, dat_ep_param, dat_ep_state) changed in size as new fields were added. Recompiling will
handle the forward compatibility issues arising from memory allocation for the structures. If an application
used a relative position of a field in a structure rather than the field name, then the source changes required
are a lot more elaborate and can not be handled in generic manner.

2.2 DAT_LMR_KCREATE
The signature of the dat_lmr_kcreate has been changed with an additional va_type. For the forward
compatibility, the va_type value of DAT_VA_TYPE_VA should be used to represent an OS Virtual
Address.

2.3 DAT_CR_REJECT
dat_cr_reject now supports the local Consumer’s ability to pass private data to a remote Consumer. The
signature of the function has changed and the size of the private data and the pointer to the start of the
private data need to be passed in. The older applications can specify private_data_size of 0, and
private_data of NULL for forward compatibility. On the requesting side there was already support for
private data in the connection event, therefore no changes are needed for forward compatibility.

2.4 DAT_RMR_BIND
The dat_rmr_bind signature has been changed with the addition of two new fields, lmr_handle and
va_type. For forward compatibility, the va_type value of DAT_VA_TYPE_VA should be used to represent
an OS Virtual Address. There is no automatic fix for lmr_handle. Applications need to store the LMR
handle returned by dat_lmr_kcreate together with the LMR Context and pass it to the dat_rmr_bind
function.

2.5 DAT_LMR_TRIPLET and DAT_RMR_TRIPLET
The formats of both triplets have been changed but the names of the individual members of the structures
have not. Since pad should not have been used by the code, no changes in the code are expected if the
fields were accessed via names and not positions in the structures. Thus, a simple recompile will handle
forward compatibility.

December 2006 DAT Collaborative 3

2.6 DAT_REGION_DESCRIPTION
There are multiple changes in dat_region_decsription which is used in dat_lmr_kcreate and dat_lmr_query
as part of the dat_lmr_param structure. If an application used the for_pa field, then it should use for_ia for
forward compatibility. If an application used the for_pointer field, then it should use for_platform for
forward compatibility. If an application used the for_array field, then it should use for_physical for forward
compatibility.

2.7 DAT_EVD_MODIFY_UPCALL
The dat_evd_modify_upcall signature has been changed with one addition field, upcall_flag. For forward
compatibility, the upcall_flag value of DAT_UPCALL_INVOC_NEW should be used.

