
A Generic RDMA API based on 
VFIO

Christoph Lameter
December 9, 2013



Basic Ideas
• Simplification and base on existing APIs and tools
• A provider interface is an implementation of a series of 

prescribed functions and is available either as
– Open source: Header file and a set of source files
– Proprietary: Header file and a linkable .o file.

• Provider uses VFIO and other Linux system calls to 
implement the functionality. System calls are expanded 
if generic functions are missing to realize certain 
functionality. No kernel dependencies aside from the 
use of new features that may be required by a driver.

• Should current kernel functionality not be sufficient 
then we may have to add what is missing.



Directly linking to a provider

• Provider header files are used by the application 
via #include “provider.h” allowing the use of 
inline functions and other optimizations.

• Resulting binary is provider specific.
• The provider can provide extensions that are 

directly usable by the application (but result in 
the application source being provider dependent).

• The app can directly inspect and modify the 
hardware status if needed (also results in non 
portable applications).

Sean Nunan



Use of a multiplexing layer
• A multiplexing layer takes the .h and the .o file to produce 

an .so object that does not include inline functions.
• The multiplexing layer provides a way to select providers at 

run time. Which means that the application has to sacrifice 
some performance performance.

• The multiplexing layer exports an API that is closely 
compatible with the provider API. Ideally applications can 
be build/linked against the multiplexing layer without 
source code changes (unless vendor specific extensions 
have been used).

• The multiplexing layer provides a .so file and a header file 
to be used to compile and link into applications.



 VFIO / Kernel Services

Provider code
(object file)

Operating System Services

Provider
dependent
Application

RDMA API
Multiplexing

Shared library

Provider1
Shared library

Provider2
Shared library

Provider
 independent
Application

Fabric
Services

(libraries)

Fabric
Services

(libraries)

Linked in (no library)

Run time loading

Support
Functions

Support
Functions

Supporting
Syscalls/ioctl

Software layers for the envisioned scheme



Higher level fabric APIs

• Build on top of the provider/multiplexing APIs.
• The APIs are provided using the libraries 

supported by the development environment of 
Linux

• Symbol versioning, API extensions etc etc are all 
supported.

• Easy debugging
• Large base of developers familiar with writing 

libraries.



Advantages for Applications

A)An application can be linked to a series of libraries that 
provide additonal functionality

B)The resulting code is kernel version independent and 
executes fully in user space.

C)Applications are portable and only depending on the stability 
of the Linux kernel API. 

D)A highly developed toolchains exists for debugging, code 
analysis etc etc.

E)Applications can use the noise reduction approaches to limit 
OS noise. There are no kernel threads from the IB subsystem 
that may interfere.


	A Generic RDMA API based on VFIO
	Basic Ideas
	Directly linking to a provider
	Use of a multiplexing layer
	Higher level fabric APIs
	Slide 7

