InfiniBand on Wide-Area Network

Weikuan Yu

Nageswara S.V. Rao

Jeffrey S. Vetter

Computer Science & Mathematics

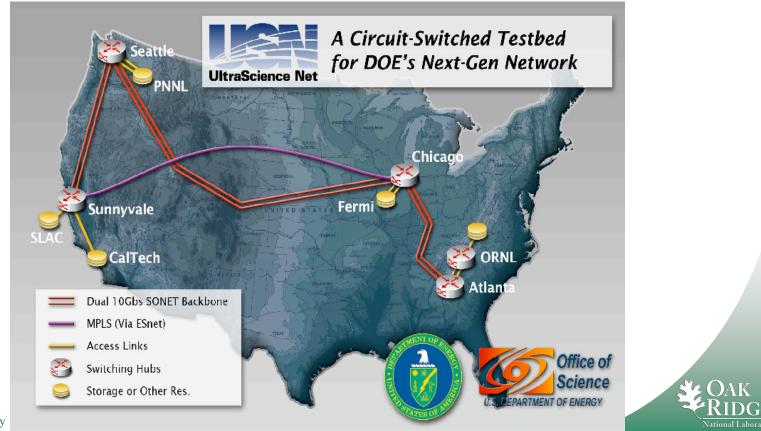
Outline

- Overview
 - Contemporary Network Technologies & InfiniBand
 - UltraScience Net at Oak Ridge National Laboratory
 - Configuration of test environment
- Performance of OFED IB on WAN
 - Network (RDMA)
 - MPI (MVAPICH)
 - Others: IPoIB, SDP, NFSoRDMA and iSER
- Perspectives

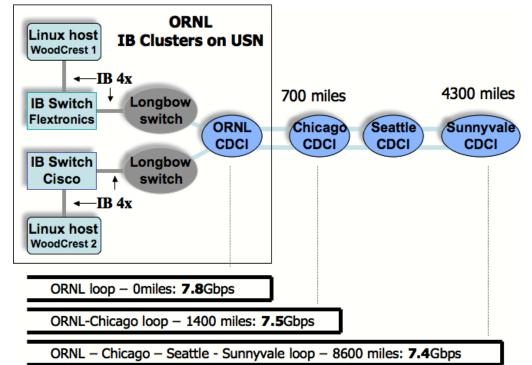
InfiniBand and Other Contemporary Network Technologies

- The race for the speed
 - SONET:
 - OC192 (10Gbps) -- OC768 (40Gbps) ...
 - Ethernet:
 - 10Gbps -- 40Gbps/100Gbps
 - InfiniBand:
 - Link rates: SDR/DDR/QDR (2.5/5/10Gbps)
 - Link width of 1x/4x/12x, 20Gbps -- 40Gbps/60Gbps

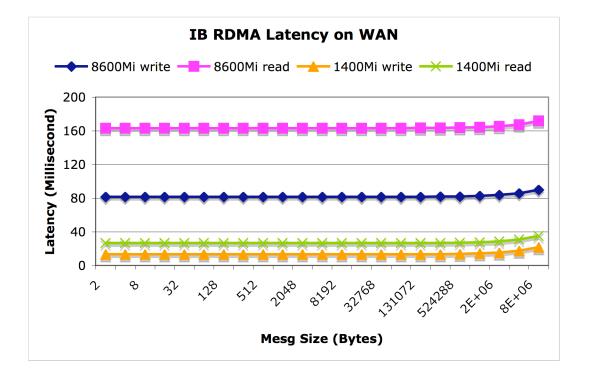
Some InfiniBand Clusters around the World


The need of IB on WAN

- InfiniBand Clusters around the globe
 - Many IB clusters are deployed
 - Some already connected, e.g. through TeraGrid
 - But only via TCP/IP protocols
 - TCP performance on Long Distance may be low
 - With 10GigE on USN (no tuning)
 - 9.2 Gbps at 0.2 miles
 - 8.2 Gbps at 1400 miles
 - 2.3-2.5 Gbps at 6600+ miles
- Range Extensions for InfiniBand on WAN
 - Obsidian Research: Longbow
 - Net.com: NX5010


UltraScience Net at ORNL

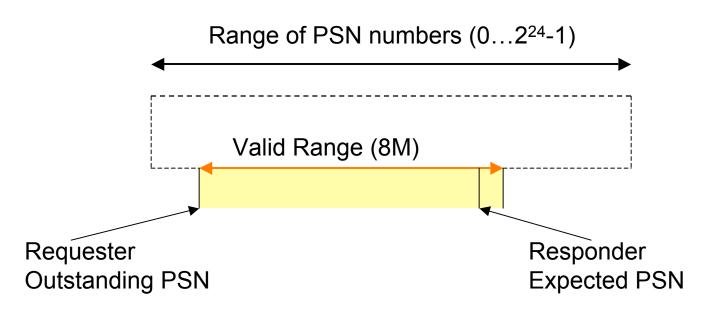
- Experimental WAN Network
 - Oak Ridge, Atlanta, Chicago, Seattle, and Sunnyvale
 - OC192 backbone connections
 - 4300 miles one way, 8600 miles loop-back


Configuration of Test Environment

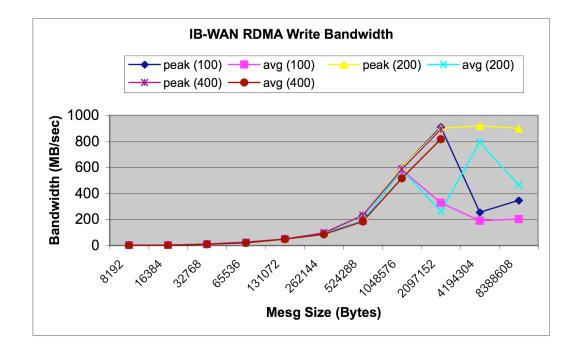
- Hardware
 - UltraScience Net
 - Longbow switches
 - Mellanox PCI-Express 4x DDR InfiniHost III HCAs
 - Two Clusters each running its own subnet manger
- Software
 - OFED-1.2.5.4 and OFED-1.3
 - MVAPICH/MVAPICH2

RDMA Latency (Longbow)

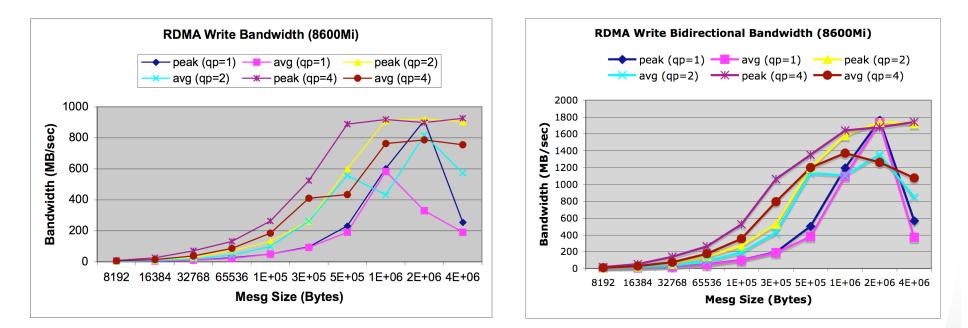
- Latency is determined by distance
- Latency of RDMA read is twice as long


RDMA Bandwidth (RC)

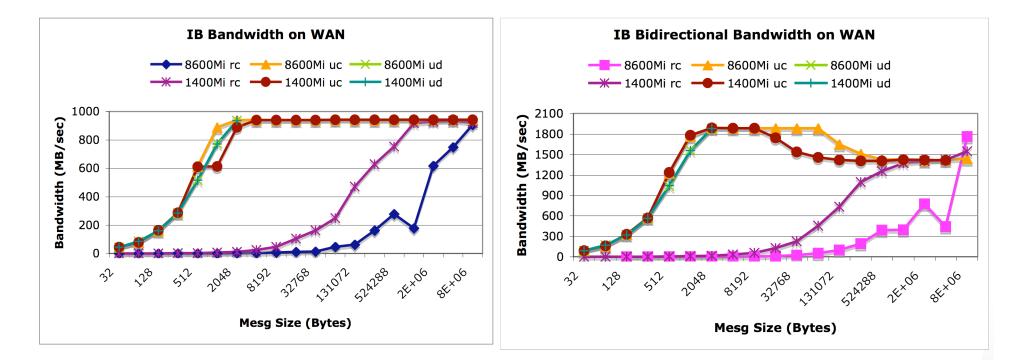
- 7.5Gbps for 1400 miles, 7.2Gbps for 8600 miles
- At long distances, bandwidth is low for messages (< 1MB).
- The performance of RDMA read is particularly low


PSN Flow Control for a RC-based QP

- InfiniBand uses a go-back N protocol for RC
 - Bandwidth = (effective window size) * PMTU / RTT
- To improve throughput
 - Inject more packets into a single QP
 - Employ more concurrent QPs
 - Increase the maximum number of RDMA Read operations per QP

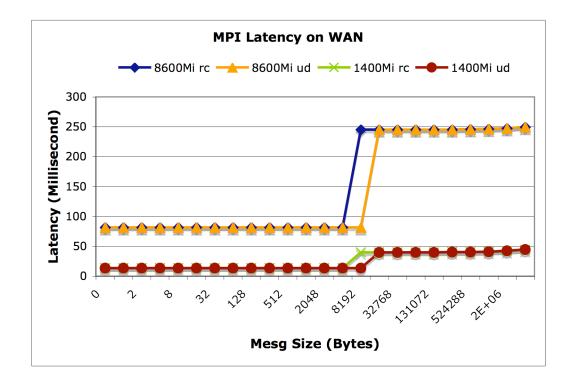

Increased Queue Depths (RC) -8600 miles

 No consistent performance improvement with different transmit queue depths


Multiple Connections -8600 miles

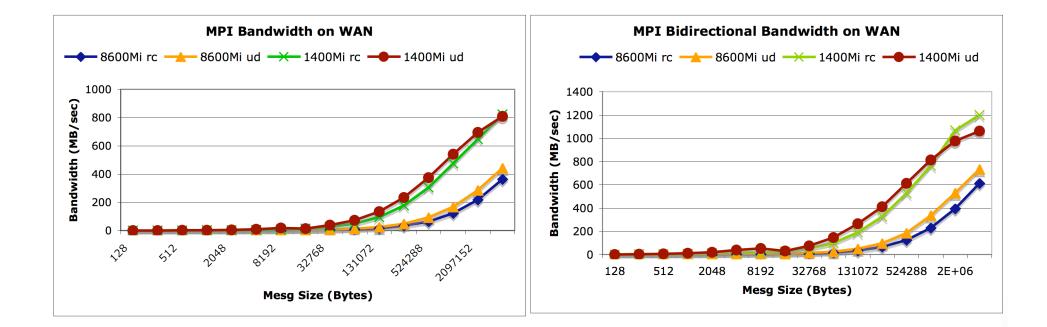
- With multiple connections (QPs)
 - Better throughput for all mid-size message
 - Sustained bandwidth of 7.4Gbps at 8600 miles

Bandwidth (UC & UD)


- Instant injection of all IB packets on the wire
- Very rare message loss at long distances or when there is a big burst of messages
- Peak bandwidth of 7.5Gbps

Outline

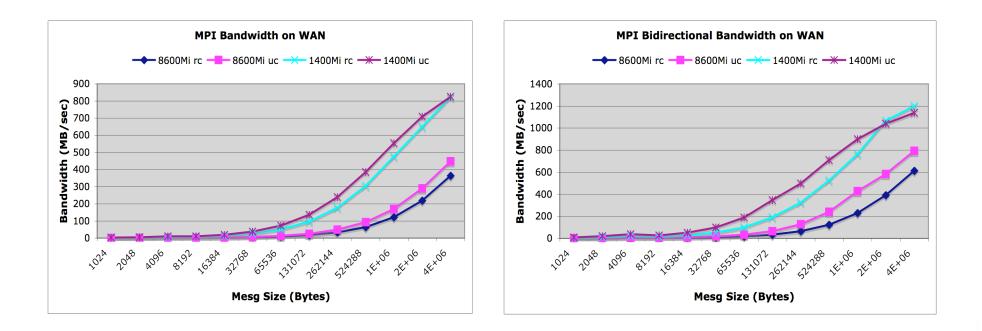
- Overview
 - Contemporary Network Technologies & InfiniBand
 - UltraScience Net at Oak Ridge National Laboratory
 - Configuration of test environment
- Performance of OFED IB on WAN
 - Network (send/receive, RDMA)
 - MPI (MVAPICH)
 - Other Protocols
- Perspectives


MPI Latency - RC and UD

- Latency determined by distances
- Latency triples for large messages bigger than rendezvous thresholds

MPI Bandwidth - RC and UD

- Longer distance requires larger window sizes
- 443MB/sec achievable with MVAPICH/UD at 8600miles



IB services for Distance Scalability

- UD
 - PMTU
 - Message fragmentation/reassembly
 - Reliability + Ordering
 - Send/Receive, No RDMA
 - Connection Scalability
- UC
 - Arbitrary message length
 - Reliability + Ordering
 - Send/Receive + RDMA
 - Distance Scalability

MPI with UC

- MPI-UC on WAN that takes advantage of UC and rare message losses
- Improve the sustained bandwidth, compared to RC

Other Protocols

- IPoIB and SDP
 - Both performed poorly at long distances (BIC only)
 - 2Gbps at 1400 miles, 400 Mbps at 8600 miles
 - Use 10GigE for applications that require TCP-based legacy protocols
 - IPoIB are enabled for occasional use, for example, when needed for management purposes
- NFSoRDMA
 - Initial evaluation at 0.2 and 1400 miles
- iSCSI over RDMA
 - Initial evaluation at 0.2, 1400 and 8600 miles
 - 300MB/sec for writes and 500MB/sec reads (0.2miles)

Perspectives

- Alternative to long-range networking
 - SONET (IB)
 - 10GigE
 - IB --> 10GigE
 - TCP --> 10GigE
 - iWARP --> 10GigE
- MPI over IB
 - MVAPICH/UD already available
 - MVAPICH/UC
 - Reliability implemented
 - Additional work on message ordering, congestion control
 - Latency-oriented optimizations no longer as important

Perspectives - continued

- File and Storage Protocols
 - Tune and optimize iSER and NFSoRDMA for WAN
 - Continue to use RDMA Read for NFSoRDMA and iSER??
- Enable Grid-oriented Protocols over InfiniBand
 - bbcp/gridFTP
 - SRB/SRM

Acknowledgment

- Obsidian Research
- Net.com
- Pete Wyckoff @ OSC
- Thank you!

