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Motivation

* | discovered in 2007 that some of our IB
software Is, ah, not quite as mature as | thought

* “IB-only boot? Solved problem”

* Well, maybe



PXE on IB experiences: 2007

* | just tried for SC 07 to set up BluePod cluster to
use the PXE-in-firmware on Mellanox cards

* Not surprised, not shocked: required wget this,
patch that, things did not quite work

* So, IB has come far, but we're still lacking on
the basics

* And | still talk to people who want an “IB only”
solution -- and we did this in 2005 at LANL



Overview

* What Coyote is
* The challenge: IB only boot, compute, operate
* How it all fit together

* Challenges and fixes
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* Linux Networx system:
— 5 Scalable Unit (SU) clusters of 272 nodes

+ 1 cluster (DotX) of 42 nodes:

— Dual-2.6GHz AMD Opteron CPUs (single core)

— 4GB memory / CPU
e 272 node SUs:

— 258 compute nodes + 1 compute-master

— 12 1/0O nodes + 1 I/O-master

* 42 node DotX:
— 36 compute nodes + 1 compute-master

— 41/0O nodes + 1 I/O-master

* Not pictured: 4 compile & 10 serial job nodes
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« System Software
— 2.6.14 based Linux — Fedora Core 3
— Clustermatic V4 (BProcV4)

—  OpenMPI

— LSF — Scheduler
— PathScale Compilers (also gcc, pgi)
— Mellanox AuCD 2.0 — OpenSM/Gen2

«  System Monitoring

— Hardware monitoring network (not shown)
accessed via third network interface (eth2) on
master nodes provides for console and power
management via conman and powerman.

— Environment monitoring via Supermon
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Coyote boot software (beoboot)

This software can support any cluster system
l.e., on top of this:

can build Rocks, Oscar, OneSIS, Tripod, etc.
— This software is not bproc or Clustermatic specific

It /s (In my experience) the fastest, most
scalable boot system

Because it uses Linux to perform the boot, not
PXE or similar systems



The Challenge: IB only compute,

boot, operate

* Early goal was to build Coyote with one, not
two, networks

* Experience on Pink and Blue Steel with Ether

— Pink: Ethernet not needed, greatly reduced cost

- Pink: Motherboard issues with Ethernet on IO
nodes delayed delivery

- Blue Steel: Ethernet was needed, greatly increased
headaches



Digression: A note on failure models

* It is odd to this day to see that the concept of
points-of-failure is misunderstood

* People do understand a single point of failure

* People don't always understand that multiple
points of failure is not the same as no single
point of failure

* This confusion leads to strange design
decisions



Example: boot management

Boot
system

* Here is a boot system for a 1024-node cluster
* “But it's a Single Point Of Failure”
* So people frequently do this:



Example: boot management:
hierarchy of tftp servers
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* What happens if one node goes out?

* Answer determines if this is MPOF

* In most cases, it is: you lose some nodes



Coyote software components

Firmware (i.e. in BIOS/CF)
* LinuxBIOS

* Linux kernel with:

- IB Gold stack, |PolB
— beoboot
— kexec
* These components were sufficient to provide a

high performance, scalable, ad-hoc boot
infrastructure for Coyote



Note: Kernel was in Compact Flash

In many cases we can put LinuxBIOS + Linux in
BIOS flash

— (see: http://tinyurl.com/2umme66) Linux + X11 BIOS!

Once we add myrinet or IB drivers, standard
FLASH parts are too small (only 1 MB)

Long term goal:Linux back in BIOS FLASH
- Else have to fall back to Ether + PXE!

Newer boards will have 4 MB and up parts



Coyote master node

This node controls the cluster

It is contacted by the individual compute/IO
nodes for boot management

Provides a Single Point Of Failure model with
ad-hoc tree boot system (more on that later)

Fastest way to boot; far faster than PXE



Coyote boot process

LinuxBIoS —» | inuxBIOS is not required, just

Configure

Platform a gOOd Idea

Loadkernel | e |njtrd contains drivers
Load initrd

Config 1B * At this point,

fconfia b0 U modprobe-+tifconfig worked
beoboot fine (thanks!)

* Thanks to Hal for DHCP that
worked



Why not just use PXE at this point?

* The problem: PXE is slow and unsophisticated

* Requires network card firmware to make the
card act like an ethernet

* Simple-minded, slow, programmed-1O device
model

* In practice, we have booted 1024 node clusters
with Linux in the time it takes PXE to not
configure one network interface



PXE inefficiencies lead to
construction of unreliable boot setup
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* Qur old friend, MPOF, we meet again




The right way to boot

* Use the strengths of the HPC network and
Linux

* We'd been doing this at LANL since 2000, and
understood it pretty well

* The idea is simple: conscript the booting nodes
to help boot other nodes

* That's the beoboot component



Booting fast and reliably
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Ad-hoc tree boot

In practice, this is incredibly fast
Image distribution: 1024 nodes, < 10 seconds
Most boot time: Linux serial output

Extraordinarily reliable

- Tested, fast Linux drivers
— Not slow, buggy PXE drivers
- Who wants 10Gb IB to emulate 10 Mb ethernet?



Next steps

* Beoboot used special protocol

* We have moved to 9p-based system called
Xbootfs



OP?

* New (to Linux) file system protocol

* Extremely light weight, easy to program
* Can be mounted via Linux 9p file system
* Created a new program called xbootfs

* Testing on clusters at LANL, SNL, partners



xbootfs

serves “files”.

data, avalil, redir
* Client: Open redir
* Read “IP”, or “me”, or “you”
@ * If “me”, open “data”, read, done
* If “you”, also become server

* if “IP”, go to other client for data



Demo ...
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Once a client becomes a server

* Other clients are redirected to it
* Clean, easy recursion

* In tests, it's fast and easy to modify



Conclusions

* |B-only systems are best built with Linux
“firmware”

* Ad-hoc trees use HPC network for booting,
eliminate slow, failure-prone static trees

* Have been working since 2005

* Our next-gen software builds on 9p protocol
(working on *BSD, Linux, MACQS, ...)



