Coyote: all IB, all the time
draft

Ron Minnich
Sandia National Labs

Acknowledgments

Andrew White, Bob Tomlinson, Daryl Grunau,
Kevin Tegtmeier, Ollie Lo, Latchesar lonkov, Josh
Aune, and many others at LANL and Linux
NetworX

Motivation

* | discovered in 2007 that some of our IB
software Is, ah, not quite as mature as | thought

* “IB-only boot? Solved problem”

* Well, maybe

PXE on IB experiences: 2007

* | just tried for SC 07 to set up BluePod cluster to
use the PXE-in-firmware on Mellanox cards

* Not surprised, not shocked: required wget this,
patch that, things did not quite work

* So, IB has come far, but we're still lacking on
the basics

* And | still talk to people who want an “IB only”
solution -- and we did this in 2005 at LANL

Overview

* What Coyote is
* The challenge: IB only boot, compute, operate
* How it all fit together

* Challenges and fixes

24-port IB

8//

Infiniband 4x

258 dual- 12 dual-

processor processor

Compute 1/ O Nodes
Nodes

Cl

Coyote

Possibile to connect 2 SUs together

for a larger 1032-cpu partition

Infiniband 4x

Infiniband 4x

24-port IB
8
8 L
| Infiniband 4x Infiniband 4x
258 dual- 12 dual- 258 dual- 12 dual-
processor processor processor processor
Compute 1/ O Nodes Compute 1/ O Nodes
Nodes Nodes

* Linux Networx system:
— 5 Scalable Unit (SU) clusters of 272 nodes

+ 1 cluster (DotX) of 42 nodes:

— Dual-2.6GHz AMD Opteron CPUs (single core)

— 4GB memory / CPU
e 272 node SUs:

— 258 compute nodes + 1 compute-master

— 12 1/0O nodes + 1 I/O-master

* 42 node DotX:
— 36 compute nodes + 1 compute-master

— 41/0O nodes + 1 I/O-master

* Not pictured: 4 compile & 10 serial job nodes

258 dual- 12 dual-
processor processor
Compute 1/ O Nodes
Nodes
C4

258 dual- 12 dual-
processor processor
Compute 1/ O Nodes
Nodes
C5

« System Software
— 2.6.14 based Linux — Fedora Core 3
— Clustermatic V4 (BProcV4)

— OpenMPI

— LSF — Scheduler
— PathScale Compilers (also gcc, pgi)
— Mellanox AuCD 2.0 — OpenSM/Gen2

« System Monitoring

— Hardware monitoring network (not shown)
accessed via third network interface (eth2) on
master nodes provides for console and power
management via conman and powerman.

— Environment monitoring via Supermon

Infiniband 4x

36 dual- 4 dual-
processor processor
Compute I/ O Nodes

Nodes
DotX

Coyote boot software (beoboot)

This software can support any cluster system
l.e., on top of this:

can build Rocks, Oscar, OneSIS, Tripod, etc.
— This software is not bproc or Clustermatic specific

It /s (In my experience) the fastest, most
scalable boot system

Because it uses Linux to perform the boot, not
PXE or similar systems

The Challenge: IB only compute,

boot, operate

* Early goal was to build Coyote with one, not
two, networks

* Experience on Pink and Blue Steel with Ether

— Pink: Ethernet not needed, greatly reduced cost

- Pink: Motherboard issues with Ethernet on IO
nodes delayed delivery

- Blue Steel: Ethernet was needed, greatly increased
headaches

Digression: A note on failure models

* It is odd to this day to see that the concept of
points-of-failure is misunderstood

* People do understand a single point of failure

* People don't always understand that multiple
points of failure is not the same as no single
point of failure

* This confusion leads to strange design
decisions

Example: boot management

Boot
system

* Here is a boot system for a 1024-node cluster
* “But it's a Single Point Of Failure”
* So people frequently do this:

Example: boot management:
hierarchy of tftp servers

OO
PR

* What happens if one node goes out?

* Answer determines if this is MPOF

* In most cases, it is: you lose some nodes

Coyote software components

Firmware (i.e. in BIOS/CF)
* LinuxBIOS

* Linux kernel with:

- IB Gold stack, |PolB
— beoboot
— kexec
* These components were sufficient to provide a

high performance, scalable, ad-hoc boot
infrastructure for Coyote

Note: Kernel was in Compact Flash

In many cases we can put LinuxBIOS + Linux in
BIOS flash

— (see: http://tinyurl.com/2umme66) Linux + X11 BIOS!

Once we add myrinet or IB drivers, standard
FLASH parts are too small (only 1 MB)

Long term goal:Linux back in BIOS FLASH
- Else have to fall back to Ether + PXE!

Newer boards will have 4 MB and up parts

Coyote master node

This node controls the cluster

It is contacted by the individual compute/IO
nodes for boot management

Provides a Single Point Of Failure model with
ad-hoc tree boot system (more on that later)

Fastest way to boot; far faster than PXE

Coyote boot process

LinuxBIoS —» | inuxBIOS is not required, just

Configure

Platform a gOOd Idea

Loadkernel | e |njtrd contains drivers
Load initrd

Config 1B * At this point,

fconfia b0 U modprobe-+tifconfig worked
beoboot fine (thanks!)

* Thanks to Hal for DHCP that
worked

Why not just use PXE at this point?

* The problem: PXE is slow and unsophisticated

* Requires network card firmware to make the
card act like an ethernet

* Simple-minded, slow, programmed-1O device
model

* In practice, we have booted 1024 node clusters
with Linux in the time it takes PXE to not
configure one network interface

PXE inefficiencies lead to
construction of unreliable boot setup

OO
PR

* Qur old friend, MPOF, we meet again

The right way to boot

* Use the strengths of the HPC network and
Linux

* We'd been doing this at LANL since 2000, and
understood it pretty well

* The idea is simple: conscript the booting nodes
to help boot other nodes

* That's the beoboot component

Booting fast and reliably

B
gOT me! ~ You're drafted
/ B
BAO . g R Ask C
Boot
o o e

.

Ad-hoc tree boot

In practice, this is incredibly fast
Image distribution: 1024 nodes, < 10 seconds
Most boot time: Linux serial output

Extraordinarily reliable

- Tested, fast Linux drivers
— Not slow, buggy PXE drivers
- Who wants 10Gb IB to emulate 10 Mb ethernet?

Next steps

* Beoboot used special protocol

* We have moved to 9p-based system called
Xbootfs

OP?

* New (to Linux) file system protocol

* Extremely light weight, easy to program
* Can be mounted via Linux 9p file system
* Created a new program called xbootfs

* Testing on clusters at LANL, SNL, partners

xbootfs

serves “files”.

data, avalil, redir
* Client: Open redir
* Read “IP”, or “me”, or “you”
@ * If “me”, open “data”, read, done
* If “you”, also become server

* if “IP”, go to other client for data

Demo ...

M
(10.1)
Open, Read redir Open,Read
L data
u :
ead avalil
ta
C1 “10.2 5432"
(10.2) Write port
redir
data v
avail Read Data C2
(10.3)
redir
data
avall

Once a client becomes a server

* Other clients are redirected to it
* Clean, easy recursion

* In tests, it's fast and easy to modify

Conclusions

* |B-only systems are best built with Linux
“firmware”

* Ad-hoc trees use HPC network for booting,
eliminate slow, failure-prone static trees

* Have been working since 2005

* Our next-gen software builds on 9p protocol
(working on *BSD, Linux, MACQS, ...)

