- •
- •
- •
- •

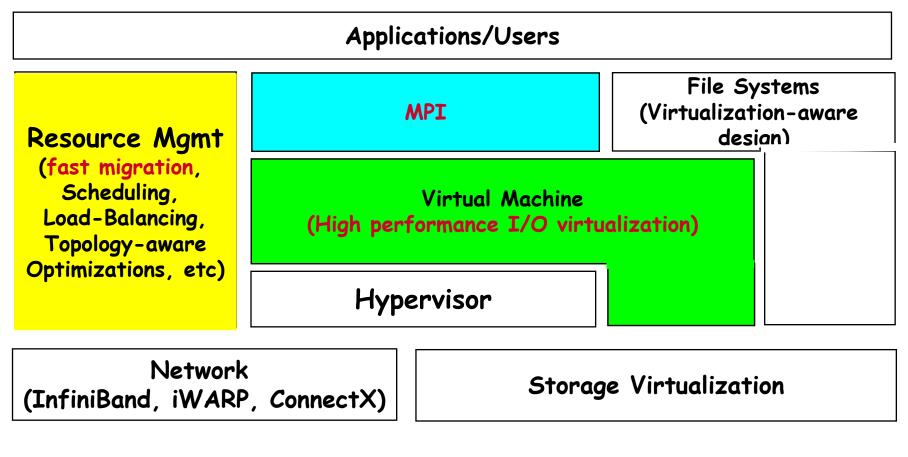
HPC with Virtual Machines: Experiences with Xen, InfiniBand and MPI

Dhabaleswar K. (DK) Panda Department of Computer Science and Engineering The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

- Introduction
- High performance I/O virtualization with InfiniBand

- Migration Support for InfiniBand
- MPI in VM environment
- Future work

Why Target Virtualization?


- Ease of management
 - Virtualized clusters
 - VM migration deal with system upgrade/failures
- Customized OS
 - Light-weight OS: No wide adoption due to management difficulties
 - VM makes these techniques possible
- System security & productivity
 - Users can do 'anything' in VM, in the worst case crash a VM, not the whole system

Challenges

- Performance overhead
 - CPU and memory
 - HPC applications are highly CPU intensive and spend most of the time in user space
 - Modern VM technologies achieve high performance by executing most instructions natively on host CPUs
 - I/O
 - Bigger problem since the hypervisor lies in the critical path

- Migration of modern OS-bypass network devices
- Management framework to take advantages of VM technology for HPC

Virtual Machine Based HPC: A Roadmap

Our Recent Research Publications

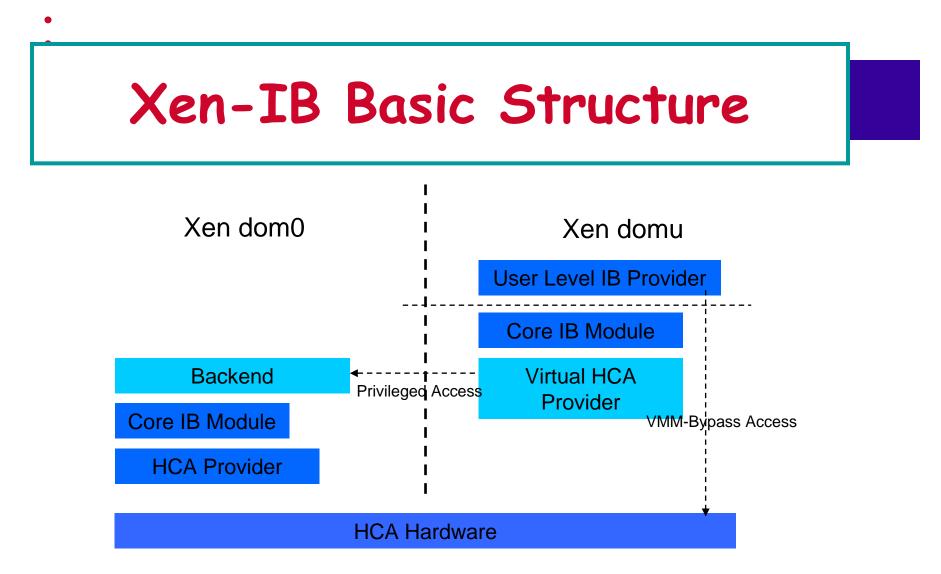
- High Performance I/O virtualization with InfiniBand (VMM-bypass I/O through Xen-IB):
 - J. Liu, W. Huang, B. Abali, D. K. Panda. High Performance VMM-Bypass I/O in Virtual Machines, USENIX Annual Technical Conference (USENIX'06), May, 2006
- A case deployment of HPC in VM-based environment:
 - W. Huang, J. Liu, B. Abali, D. K. Panda. <u>A Case for High Performance</u> Computing with Virtual Machines, <u>ACM International Conference on</u> SuperComputing (ICS '06), June, 2006
- Support for migrating OS-bypass networks (extension to XenIB with Migration support):
 - W. Huang, J. Liu, M. Koop, B. Abali, D. K. Panda. Nomad: Migrating OSbypass Networks in Virtual Machines, The Third ACM/USENIX Conference on Virtual Execution Environment (VEE'07), June, 2007
- High Performance VM migration and MPI Design
 - W. Huang, Q. Gao, J. Liu, D. K. Panda. High Performance Virtual Machine Migration with RDMA over Modern Interconnects, Under Review

External collaborators (J. Liu and B. Abali) from IBM T.J. Watson Research Center

- Introduction
- High performance I/O virtualization with InfiniBand

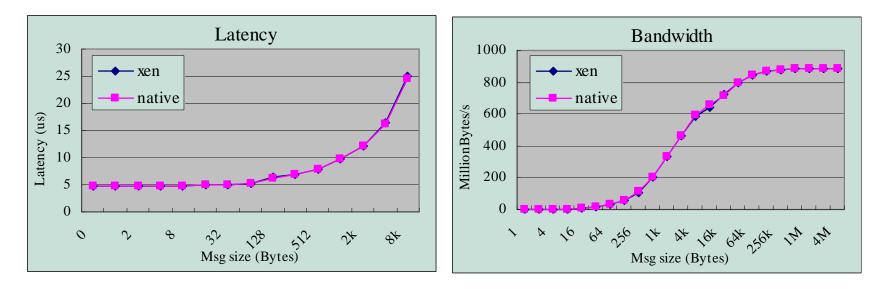
- Migration Support for InfiniBand
- MPI in VM environment
- Future work

VMM-bypass I/O: Basic Ideas

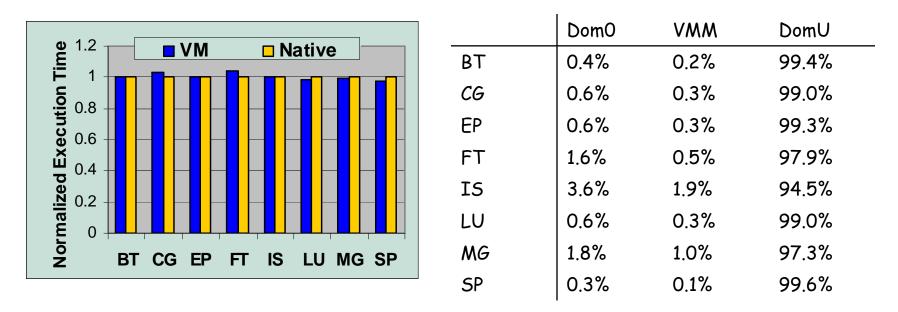

- VMM-bypass
 - Direct HW access for time-critical I/O operations
 - VMM involved for setup and management
- Extending the concept of OS-bypass in the context of VM environments
 - Requires intelligent I/O adapters
- Para-virtualization
 - Does not emulate the same hardware interface in guest VMs

8

- But maintains the same high-level interfaces used by OSes and applications in guest VMs


Xen-IB: InfiniBand Virtualization Driver for Xen

- Follows Xen split driver model
- Presents virtual HCAs to guest domains
 - Para-virtualization
- Two modes of access:
 - Privileged access
 - OS involved
 - Setup, resource management and memory management
 - OS/VMM-bypass access
 - Directly done in user space/guest VM
 - Maintains high performance of InfiniBand hardware


J. Liu, W. Huang, B. Abali, D. K. Panda. High Performance VMM-Bypass I/O in Virtual Machines, USENIX Annual Technical Conference (USENIX'06), May, 2006

MPI Latency and Bandwidth (MVAPICH)

- Only VMM Bypass operations are used
- Xen-IB performs similar to native InfiniBand
- Numbers taken with MVAPICH-1

HPC Benchmarks (NAS)

 NAS Parallel Benchmarks achieve similar performance in VM and native environment (8x2)

W. Huang, J. Liu, B. Abali, D. K. Panda. A Case for High Performance Computing with Virtual Machines, *ACM International Conference on SuperComputing (ICS '06),* June, 2006

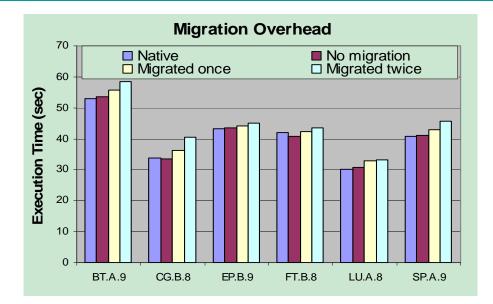
- Introduction
- High performance I/O virtualization with InfiniBand

- Migration Support for InfiniBand
- MPI in VM environment
- Future work

Challenges of Migrating InfiniBand

- Location dependent resources (cannot migrate with VMs):
 - LIDS, QPNS, CQNS
- User level communication:
 - Can be caching handles (memory keys, QPNs, ..) anywhere

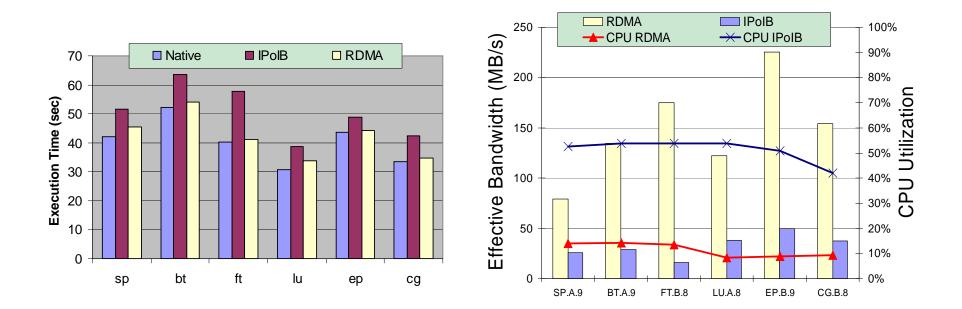
- Hard to suspend communication from kernel
- Hardware managed connection state:
 - Cannot easily achieve reliability during migration


Key Ideas of Nomad: Migration support for InfiniBand in VM environment

- Namespace Virtualization:
 - Virtualize all location dependent resources, such as LIDs, QPNs, CQNs, memory keys, etc.
 - Special handling for memory keys to achieve low overhead in critical path
 - Intercept communication calls at libmthca to achieve application transparency
- Coordination:
 - libmthca coordinates during migration to suspend/resume communication

15

 Push QPN, LIDs, memory keys updates to connected peers


Overhead of Migration

- Each migration costs 0.5 to 3 seconds, depending on the computing and communication patterns
- One process per node (dual processors) to reduce Xen overhead

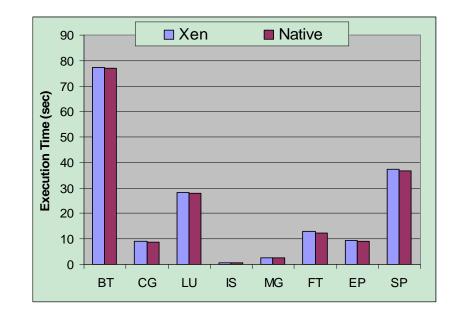
W. Huang, J. Liu, M. Koop, B. Abali, D. K. Panda. Nomad: Migrating OS-bypass Networks in Virtual Machines, *The Third ACM/USENIX Conference on Virtual Execution Environment (VEE'07)*, June, 2007

Fast Migration over RDMA

- Disable one physical CPU on the nodes
- Migration overhead with IPoIB drastically increases
- RDMA achieves higher migration performance with less CPU utilization

17

•


- Introduction
- High performance I/O virtualization with InfiniBand

- Migration Support for InfiniBand
- MPI in VM environment
- Future work

MPI in Virtual Machine Environment

- MPI libraries supporting OFA verbs should benefit transparently from VMM-bypass I/O and the migration support
- Extensions: allow efficient inter-VM communication

Evaluation on Larger Cluster

- Numbers taken on 64 nodes (dual processor) using NAS class C ٠
- Overhead is marginal in most cases ٠
- Some gap (FT, SP) is due to the optimized SMP performance of ٠ MVAPICH2. We will optimize the Xen case in future 20

- Introduction
- High performance I/O virtualization with InfiniBand

- Migration Support for InfiniBand
- MPI in VM environment
- Future work

Future Work

- System-level support for better virtualization
 - Fully compatible implementation with latest OFA interface (including SDP, MAD service, etc. besides user verbs)
 - Explore migration solutions exploiting hardware features (e.g. Mellanox ConnectX)
 - · Achieving inter-operability with unmodified hosts

- Enhancement to file systems to support effective image management in VM-based environment
- Scalability studies

Web Pointers

http://nowlab.cse.ohio-state.edu/projects/xen/

http://mvapich.cse.ohio-state.edu/

