
InfiniBand Storage Market

Thad Omura, VP Product Marketing

The Need for InfiniBand Storage

- InfiniBand server cluster deployment drive the need for Native InfiniBand Storage
 - Performance, Convergence, Scalability, Roadmap
- Block-Level
 - SCSI RDMA Protocol (SRP)
 - iSER (iSCSI Extension over RDMA)
- NAS/File-level
 - NFS over RDMA
- Scalable File Systems
 - Lustre, GPFS, TerraGrid, IBRIX, Panasas, etc.

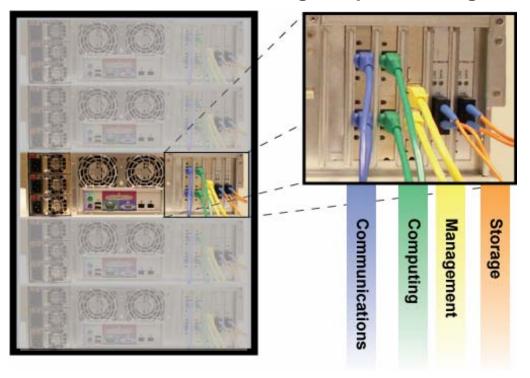
Markets Demanding Native IB Storage

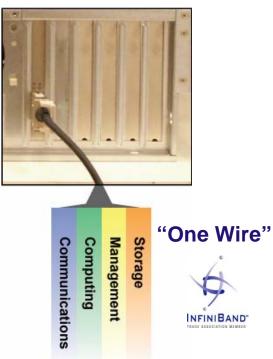
Data Centers

 Clustered database, data warehousing, shorter backups, convergence, virtualization

Financial

- Real-time risk assessment, grid computing and convergence
- Electronic Design Automation (EDA) and Computer Automated Design (CAD)
 - File system I/O is the bottleneck to shorter job run times
- High Performance Computing
 - High throughput I/O to expanding datasets, convergence
- Graphics, Video and Visualization
 - Data file sizes exploding, shorter backups

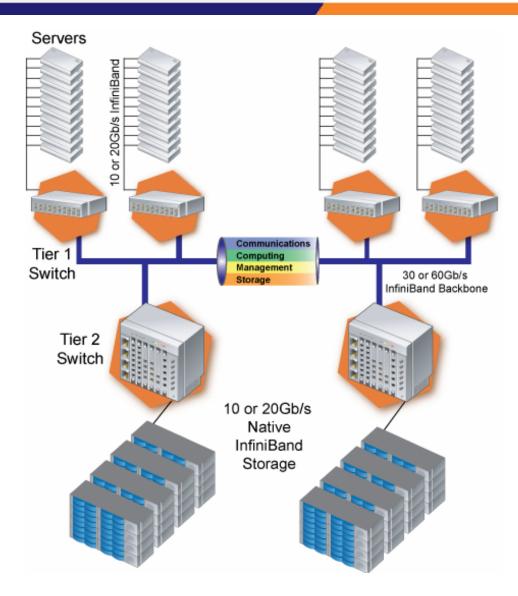

IB Storage Value Proposition: Convergence



Cluster of Servers

Multiple Fabrics
High CapEx and High TCO

Single InfiniBand Fabric Low CapEx and Optimal TCO



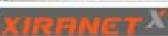
InfiniBand is the only fabric technology that can efficiently and cost-effectively converge the data center

A Unified InfiniBand Fabric

- Unified IB Fabrics deliver performance boost and cost savings
- No gateway bottlenecks
- Ultimate scalability
- Optimal total cost of ownership
- High bandwidth pipe for capacity provisioning
- Dedicated I/O channels enable convergence

InfiniBand Storage Vendors

InfiniBand for Storage Clustering and Failover


Western Scientific

