
OFA Training Program

www.openfabrics.org 1

Author: Rupert Dance
Date: 11/15/2011

Writing Application Programs for

RDMA using OFA Software

Agenda – OFA Training Program

• Program Goals

• Instructors

• Programming course format

• Course requirements & syllabus

• UNH-IOL facilities & cluster equipment

• RDMA Benefits

• Programming course examples

• Future courses

• Course availability

www.openfabrics.org 2

• Provide application developers with classroom

instruction and hands on experience writing, compiling

and executing an application using OFED verbs API

• Illustrate how RDMA programming is different from

sockets programming and provide the rationale for using

RDMA.

• Focus on the OFED API, RDMA concepts and common

design patterns

• Opportunity to develop applications on the OFA cluster at

the University of New Hampshire – includes the latest

hardware from Chelsio, DDN, Intel, Mellanox, NetApp &

QLogic

www.openfabrics.org 3

OFA Training Program - Overall Goals

Instructors

• Dr. Robert D. Russell: Professor in the CS Department at UNH

– Dr. Russell has been an esteemed member of the University of New

Hampshire faculty for more than 30 years and has worked with the

InterOperability Laboratory's iSCSI consortium, iWARP consortium and

the OpenFabrics Interoperability Logo Program.

• Paul Grun: Chief Scientist for System Fabric Works

– Paul has worked for more than 30 years on server I/O architecture and

design, ranging from large scale disk storage subsystems to high

performance networks. He served as chair of the IBTA's Technical

Working Group, contributed to many IBTA specifications and chaired the

working group responsible for creating the RoCE specification.

• Rupert Dance: Co-Chair of the OFA Interoperability Working Group

– Rupert helped to form and has led both the IBTA Compliance and

Interoperability and OFA Interoperability programs since their inception.

His company, Software Forge, worked with the OFA to create and

provide the OFA Training Program.

 www.openfabrics.org 4

Programming Course Format

• Part One - Introduction to RDMA

– I/O Architecture and RDMA Architecture

– Address translation and network operations

– Verbs Introduction and the OFED Stack

– Introduction to wire protocols

• Part Two - Programming with RDMA

– Hardware resources: HCAs, RNICs, etc

– Protection Domains and Memory Registration keys

– Connection Management

– Explicit Queue Manipulation

– Explicit Event Handling

– Explicit Asynchronous Operation

– Explicit Manipulation of System Data Structures

www.openfabrics.org 5

Programming Course Requirements

• Requirements

– Knowledge of “C” programming including concepts

such as structures, memory management, pointers,

threads and asynchronous programming

– Knowledge of Linux since this course does not

include Windows programming

• Helpful

– Knowledge of Event Handlers

– Knowledge of sockets or network programming

– Familiarity with storage protocols

www.openfabrics.org 6

Programming Course Syllabus

• Introduction to OFA architecture
– Verbs and the verbs API

– A Network perspective

– RDMA Operations – SEND/RECEIVE, RDMA

READ & WRITE

– RDMA Services

– Isolation and Protection Mechanisms

– A brief overview of InfiniBand Management

– A quick introduction to the OFED stack

– Host perspective

• Asynchronous processing

• Channel vs. RDMA semantics

• Basic Data Structures
– Connection Manager IDs

– Connection Manager Events

– Queue Pairs

– Completion Queues

– Completion Channels

– Protection Domains

– Memory Registration Keys

– Work Requests

– Work Completions

www.openfabrics.org 7

• Connection management basics
– Establishing connections using RDMACM

– RDMACM API

• Basic RDMA programming
– Memory registration

– Object creation

– Posting requests

– Polling

– Waiting for completions using events

– Common practices for implementing blocking wait

• Design patterns
– Send-receive

– RDMA cyclic buffers

– Rendezvous

• Advanced topics
• Work Request chaining

• Multicast

• Unsignaled Completions

• RDMA ecosystems
• Native InfiniBand

• iWARP

• RoCE

www.openfabrics.org 8

UNH Interoperability Lab

Linux

www.openfabrics.org 9

Windows
OFA Cluster

at UNH-IOL

Thanks to AMD, Intel and OFA for the addition of 16 new nodes in October 2011

OFA Software Benefits

• Remote Direct Memory Access provides

– Low latency – stack bypass and copy avoidance

– Kernel bypass – reduces CPU utilization

– Reduces memory bandwidth bottlenecks

– High bandwidth utilization

• Cross Platform support

– InfiniBand

– iWARP

– RoCE

www.openfabrics.org 10

Conventional I/O versus RDMA I/O

www.openfabrics.org 11

OS involved in all operations

Channel interface runs in user space

No need to access the kernel

RDMA

I/O

Conventional

I/O

Address Translation

www.openfabrics.org 12

Sockets Based

Channel Based

Many apps, one interface, three wires

www.openfabrics.org 13

OFED – the whole picture

SA Subnet

Administrator

MAD Management

Datagram

SMA Subnet Manager

Agent

PMA Performance

Manager Agent

IPoIB IP over InfiniBand

SDP Sockets Direct

Protocol

SRP SCSI RDMA

Protocol (Initiator)

iSER iSCSI RDMA

Protocol (Initiator)

RDS Reliable Datagram

Service

VNIC Virtual NIC

UDAPL User Direct Access

Programming Lib

HCA Host Channel

Adapter

R-NIC RDMA NIC

Common

InfiniBand

iWARP

Key
InfiniBand HCA iWARP R-NIC

Hardware

Specific Driver

Hardware Specific

Driver

Connection

Manager
MAD

 OpenFabrics Kernel Level Verbs / API

SA

Client
Connection

Manager

Connection Manager

Abstraction (CMA)

 OpenFabrics User Level Verbs & CMA / API

SDP IPoIB SRP iSER RDS

SDP Lib

User Level

MAD API

Open

SM

Diag

Tools

Hardware

Provider

Mid-Layer

Upper

Layer

Protocol

User

APIs

Kernel Space

User Space

NFS-RDMA

RPC

Cluster

File Sys

Application

Level

SMA

Clustered

DB Access

Sockets

Based

Access

Various

MPIs

Access to

 File

Systems

Block

Storage

Access

IP Based

App

Access

Apps &

Access

Methods

for using

OF Stack

UDAPL

K
e
rn

e
l
b
yp

a
s
s

K
e
rn

e
l
b
yp

a
s
s

VNIC

© 2011 OpenFabrics Alliance, Inc.
08/23/2011 14 www.openfabrics.org

Programming Course Sample

• Description of the verbs

• Description of the data structures

• Preparation for posting a send operation

• Create the work request

• Gathering data from memory

• Putting gathered elements on the wire

• The Big Picture

www.openfabrics.org 15

Programming Course - OFED Verbs

www.openfabrics.org 16

Programming Course – Data Structures

www.openfabrics.org 17

Bottom-up client setup phase

• rdma_create_id() - create struct rdma_cm_id – identifier

• rdma_resolve_addr() - bind struct rdma_cm_id to local device

• rdma_resolve_route() - resolve route to remote server

• ibv_alloc_pd() - create struct ibv_pd – protection domain

• ibv_create_cq() - create struct ibv_cq – completion queue

• rdma_create_qp() - create struct ibv_qp – queue pair

• ibv_reg_mr() - create struct ibv_mr – memory region

• rdma_connect() - create connection to remote server

www.openfabrics.org 18

19

Creating Scatter Gather Elements

20

Protection Domains – Memory Regions

21

Gather during ibv_post_send()

22

Send Work Request (SWR)

• Purpose: tell network adaptor what data to send

• Data structure: struct ibv_send_wr

• Fields visible to programmer:

 next pointer to next SWR in linked list

 wr_id user-defined identification of this SWR

 sg_list array of scatter-gather elements (SGE)

 opcode IBV_WR_SEND

 num_sge number of elements in sg_list array

send_flags IBV_SEND_SIGNALED

• Programmer must fill in these fields before calling

ibv_post_send()

23

Posting to send data

• Verb: ibv_post_send()

• Parameters:

– Queue Pair - QP

– Pointer to linked list of Send Work Requests – SWR

– Pointer to bad SWR in list in case of error

• Return value:

== 0 all SWRs successfully added to send queue (SQ)

 != 0 error code

Bottom-up client break-down phase

• rdma_disconnect() - destroy connection to remote server

• ibv_dereg_mr() - destroy struct ibv_mr – memory region

• rdma_destroy_qp() - destroy struct ibv_qp – queue pair

• ibv_destroy_cp() - destroy struct ibv_cq – completion queue

• ibv_dealloc_pd() - deallocate struct ibv_pd – protection domain

• rdma_destroy_id() - destroy struct rdma_cm_id – identifier

www.openfabrics.org 24

6/13/2011 © 2011 OpenFabrics Alliance, Inc 25

Multicast concept

6/13/2011 © 2011 OpenFabrics Alliance, Inc 26

Multicast

• Optional to implement in IB CAs and switches

• Uses Unreliable Datagram (UD) mode

– Only Send/Recv operations allowed

– Both sides must actively participate in data transfers

• Receiver must have RECV posted for next SEND

• Receiver must process each RECV completion

• Only possible with IB, not iWARP

www.openfabrics.org 27

Programming Course – The Big Picture

Future OFA Software Training Course

• System Administration

– System configuration

– Cluster optimization

• Advanced Programming topics

– Kernel level programming

• ULP Training

– MPI

– RDS

– SRP

www.openfabrics.org 28

OFA Programming Course Availability

• Available quarterly at the University of New Hampshire

Interoperability Lab (UNH-IOL)
– January 18-19, 2012 – OFA Programming Course

• January 20th, 2012 – Free Ski Trip to Loon Mountain

– March 14-15 2012 – OFA Programming Course

– Registration: https://www.openfabrics.org/resources/training/training-offerings.html

• The course can be presented at your company location
– Additional fees apply for travel and equipment required to support the training

materials and exercises.

– Minimum of 8 attendees required

– Europe and Asia supported in addition to USA

• New for 2012, the course will be made available via Webinar
– This is a 4 day course made available for developers in Asia and other countries

requiring extensive travelling

– Minimum of 8 attendees required

• For more information contact: rsdance@soft-forge.com

29 www.openfabrics.org

http://www.iol.unh.edu/services/testing/ofa/index.php
http://www.iol.unh.edu/services/testing/ofa/index.php
http://www.iol.unh.edu/services/testing/ofa/index.php
https://www.openfabrics.org/resources/training/training-offerings.html
https://www.openfabrics.org/resources/training/training-offerings.html
https://www.openfabrics.org/resources/training/training-offerings.html
https://www.openfabrics.org/resources/training/training-offerings.html
https://www.openfabrics.org/resources/training/training-offerings.html
mailto:rsdance@soft-forge.com
mailto:rsdance@soft-forge.com
mailto:rsdance@soft-forge.com

Backup

www.openfabrics.org 30

31

our_setup_send_wr() code snippet

static void

our_setup_send_wr(struct our_control *conn, struct ibv_sge *sg_list,

 enum ibv_wr_opcode opcode, int n_sges,

 struct ibv_send_wr *send_work_request)

{

 /* set the user's identification to be pointer to itself */

 send_work_request->wr_id = (uint64_t)send_work_request;

 /* not chaining this work request to other work requests */

 send_work_request->next = NULL;

 /* point at array of scatter-gather elements for this send */

 send_work_request->sg_list = sg_list;

 /* number of scatter-gather elements in array actually being used */

 send_work_request->num_sge = n_sges;

 /* the type of send */

 send_work_request->opcode = opcode;

 /* set SIGNALED flag so every send generates a completion */

 send_work_request->send_flags = IBV_SEND_SIGNALED;

 /* not sending any immediate data */

 send_work_request->imm_data = 0;

} /* our_setup_send_wr */

32

ibv_post_send() code snippet

int

our_post_send(struct our_control *conn, struct ibv_send_wr *send_work_request,

 struct our_options *options)

{

struct ibv_send_wr *bad_wr;

int ret;

errno = 0;

ret = ibv_post_send(conn->queue_pair, send_work_request, &bad_wr);

If (ret != 0) {

 if (our_report_wc_status(ret, "ibv_post_send", options) != 0) {

 our_report_error(ret, "ibv_post_send", options);

 }

}

return ret;

} /* our_post_send */

