& OFA Training Program

Writing Application Programs for
RDMA using OFA Software

Author: Rupert Dance
Date: 11/15/2011

www.openfabrics.org 1

Agenda — OFA Training Program &)

 Program Goals

 |Instructors

 Programming course format

o Course requirements & syllabus
 UNH-IOL facilities & cluster equipment
« RDMA Benefits

e Programming course examples

* Future courses

e Course availability

OFA Training Program - Overall Goals @

OPENFABRICS

ALLIANCE

e e
~= —

——— — " s

* Provide application developers with classroom
Instruction and hands on experience writing, compiling
and executing an application using OFED verbs API

 lllustrate how RDMA programming is different from
sockets programming and provide the rationale for using
RDMA.

e Focus on the OFED API, RDMA concepts and common
design patterns

« Opportunity to develop applications on the OFA cluster at
the University of New Hampshire — includes the latest
hardware from Chelsio, DDN, Intel, Mellanox, NetApp &

QLogic

Instructors @
OPENFABRICS

— — — —— - —

 Dr. Robert D. Russell: Professor in the CS Department at UNH

— Dr. Russell has been an esteemed member of the University of New
Hampshire faculty for more than 30 years and has worked with the
InterOperability Laboratory's iSCSI consortium, iWARP consortium and

the OpenFabrics Interoperability Logo Program.

 Paul Grun: Chief Scientist for System Fabric Works

— Paul has worked for more than 30 years on server I/O architecture and
design, ranging from large scale disk storage subsystems to high
performance networks. He served as chair of the IBTA's Technical
Working Group, contributed to many IBTA specifications and chaired the
working group responsible for creating the RoCE specification.

 Rupert Dance: Co-Chair of the OFA Interoperability Working Group

— Rupert helped to form and has led both the IBTA Compliance and
Interoperability and OFA Interoperability programs since their inception.
His company, Software Forge, worked with the OFA to create and

provide the OFA Training Program.

www.openfabrics.org 4

Programming Course Format

 Part One - Introduction to RDMA
— 1/O Architecture and RDMA Architecture
— Address translation and network operations
— Verbs Introduction and the OFED Stack
— Introduction to wire protocols

e Part Two - Programming with RDMA
— Hardware resources: HCAs, RNICs, etc
— Protection Domains and Memory Registration keys
— Connection Management
— Explicit Queue Manipulation
— Explicit Event Handling
— Explicit Asynchronous Operation
— Explicit Manipulation of System Data Structures

www.openfabrics.org 5

 Requirements

— Knowledge of “C” programming including concepts
such as structures, memory management, pointers,
threads and asynchronous programming

— Knowledge of Linux since this course does not
iInclude Windows programming

* Helpful
— Knowledge of Event Handlers
— Knowledge of sockets or network programming
— Familiarity with storage protocols

www.openfabrics.org 6

e |ntroduction to OFA architecture
— Verbs and the verbs API
— A Network perspective

— RDMA Operations — SEND/RECEIVE, RDMA
READ & WRITE

— RDMA Services
— Isolation and Protection Mechanisms
— Abrief overview of InfiniBand Management
— Aquick introduction to the OFED stack
— Host perspective
e Asynchronous processing
e Channel vs. RDMA semantics
e Basic Data Structures
— Connection Manager IDs
— Connection Manager Events
— Queue Pairs
— Completion Queues
— Completion Channels
— Protection Domains
— Memory Registration Keys
— Work Requests
— Work Completions

Connection management basics
— Establishing connections using RDMACM
— RDMACM API

Basic RDMA programming
— Memory registration
— Obiject creation
— Posting requests
— Polling
— Waiting for completions using events
— Common practices for implementing blocking wait

Design patterns

— Send-receive

— RDMA cyclic buffers

— Rendezvous
Advanced topics

Work Request chaining

e Multicast

* Unsignaled Completions
RDMA ecosystems

* Native InfiniBand

 IWARP

* RoCE

www.openfabrics.org 7

UNH Interoperability Lab &

www.openfabrics.org 8

. OFA Cluster ..
Linux 2t UNH-10 Windows 05%5

—_——————

www.openfabrics.org .

OFA Software Benefits (%

———

« Remote Direct Memory Access provides
— Low latency — stack bypass and copy avoidance
— Kernel bypass — reduces CPU utilization
— Reduces memory bandwidth bottlenecks
— High bandwidth utilization

e Cross Platform support

— InfiniBand
— IWARP
— ROCE

www.openfabrics.org 10

Conventional I/O versus RDMA I/O Oﬁﬂs

ALLIA

OS involved in all operations

= ||Conventional
/10O

RDMA

channel.,yf I/ O __ channel:yf .

Channel interface runs in user space
No need to access the kernel

www.openfabrics.org 11

Address Translation &J

Sockets Based

virtual virtual

.+~ physical physical ™.

Channel Based

e~

www.openfabrics.org 12

B P Enet
network network fabric

www.openfabrics.org 13

OFED - the whole picture

OPENFARRICS

SA Subnet
Application IP Based | | Sockets : Block Access to Administrator
Various Clustered A
Level _ App Based MPls Storage DB Access File
Diag | | Open Access Access Access Systems MAD Management
Tools|| SM Jr Datagram
User Level UDAPL SMA iubnet Manager
MAD API , gent
User OpenFalrics User Level Verbs & CMA /| API PMA Performance
APIs . Manager Agent
User Space I_S_DP Lib IPolB IP over InfiniBand
"" """l SDP Sockets Direct
Upper Kernel|Space | |— Protocol
Layer VNIC . NFS-RDMA | | Cluster SRP SCSI RDMA
Protocol It SDP SRP | |ISER RDS RPC File Sys Protocol (Initiator)
——— ----{ ISER [iSCSIRDMA
Connection Manager Protocol (Initiator)
_ " Abstraction (CMA) % RDS Reliable Datagram
Mid-Layer & SA a Service
Q. i 1 Q.
S . MAD || SMA Connection Connection = -
% Client Manager Manager % VNIC Virtual NIC
c c UDAPL User Direct Access
< OpenFabrics Kernel Level Verbs / API < Programming Lib
HCA Host Channel
Adapter
Provider Hardware FENHITENE SREEie R-NIC | RDMA NIC
Specific Driver Driver
[Common] | Apps &
Ke Access

for using

iWARP OF Stack

© 2011 OpenFabrics Alliance, Inc.

Programming Course Sample &)

———

e Description of the verbs

e Description of the data structures

* Preparation for posting a send operation
* Create the work request

« Gathering data from memory

e Putting gathered elements on the wire

e Multicast concept

 The Big Picture

Programming Course - OFED Verbs

ibv_post_recv
Transfer ibv_post_send

Posting rdma_create_gp rdma_destroy_qgp

ibv_create_cqg ibv_poll_cq ibv_destroy_cp
ibv_wc status str

Tra ns,_fer ibv_create _comp_channel ibv_req_notify_cqg ibv_destroy_comp_channel
Completion ibv_get_cq_event

ibv_ack cq _events

Memory ibv_alloc_pd ibv_dealloc_pd
Registration ibv_reg_mr ibv_dereg_mr
rdma_create id rdma_resolve addr rdma_destroy_id
rdma_resolve route

rdma_connect
rdma_disconnect
rdma_bind_addr
rdma_listen
Connection rdma_get cm_event
Management rdma_ack_cm_event
rdma_event_sir
rdma_accept
rdma_reject
rdma_create_event_channel rdma_migrate_id rdma_destroy event channel
rdma_get local_addr
rdma_get peer_addr

rdma_get_devices
Misc rdma_free_devices
ibv_query devices

Setup Use Break-Down

www.openfabrics.org 16

——

ibv_recv_wr
Transfer ibv_send_wr
Posting ibv_sge
ibv_qp
ibv_qp init attr

Transfer ibv_cq

Completion - lbv_we
ibv_comp_channel

Memory ibv_pd
Registration ibv_mr

rdma_cm_id
Connection rdma_conn_param
Management rdma_cm_event
rdma event channel
ibv_context
Misc ibv_device
ibv_device attr

www.openfabrics.org 17

Bottom-up client setup phase &)

—— —

— e ———

rdma_create id() - create struct rdma_cm _id — identifier
rdma_resolve_addr() - bind struct rdma_cm_id to local device
rdma_resolve_route() - resolve route to remote server
Ibv_alloc_pd() - create struct ibv_pd — protection domain
Ibv_create cq() - create struct ibv_cq — completion queue
rdma_create gp() - create struct ibv_qgp — queue pair
Ibv_reg_mr() - create struct ibv_mr — memory region
rdma_connect() - create connection to remote server

www.openfabrics.org 18

. ibv_send_ wr

N3 Bytes

Sum of
N4 through N9

i _ ibv_sge
sg_list* 0 addr
num_sge=2 Length=N1 Bytes
Lkey=W N1 Bytes
1 addr
Length=N2 Bytes
next* Lkey=X } —
ibv_send_wr b
wr_id - I V_Sge
sg_list* 0 addr
num_sge=1 Length=N3 Bytes
Lkey=Y
next*
ibv_sge
. addr / N4 Bytes
|bv_send_wr o | M Tongthona Bytss N5 Bytes
wrid Lkey=2 N6 Bytes
sg_list 1 addr N7 Bytes
num_sge=3 Length=N6 Bytes N8 Bytes
Lkey=Z /_
2 addr

next*

Length=MN9 Bytes

Lkey=2Z

_ibv_send_wr

> —_— ~ ibv_sge
sg_list” e addr
num_sge=2 Length=N1 Bytes
Lkey=W
1 addr
Length=N2 Bytes
next* Lkey=X
ibv_send_wr :
i - ibv_sge
sg_list* 0 addr
num_sge=1 Length=N3 Bytes
Lkey=Y
next”
ibv_sge -
] addr — " N4 Bytes
IbV_Send_WI' 0 Length=N4 Bytes N5 Bytes
wr_id Lkey=Z / N6 Bytes
sg_list* 1 addr ~ N7 Bytes
num_sge=3 Length=N6 Bytes N8 Bytes
Lkey=2 __—" N9 Bytes
2 addr —
Length=N9 Bytes
next’ Lkey=Z

Sum of
N4 through N9

ibv_mr

addr

Length=N1 Bytes

Lkey=W

rkey

ibv_mr

addr

Length=N2 Bytes

Lkey=X

rkey

ibv_mr

addr

Length=N3 Bytes

Lkey=Y

rkey

ibv_mr

addr

Length=Sum(N4 =2 N&)

Lkey=Z

rkey

Ibv_sge
0 addr +
Length=N1 Bytes

lkey
1 addr *-

v | —
lkey

2 addr *-]
Length=N3 Bytes
Ikey

Gather out of memory onto the Wire

e e : ——
* Purpose: tell network adaptor what data to send
o Data structure: struct ibv_send_wr

* Fields visible to programmer:
next pointer to next SWR in linked list
wr_id user-defined identification of this SWR
sg_list array of scatter-gather elements (SGE)
opcode IBV_WR_SEND
num_sge number of elements in sg_list array
send flags IBV_SEND SIGNALED

 Programmer must fill in these fields before calling
Ibv_post_send()

Posting to send data &)

—_— —— — -
—— e . e

e Verb: ibv post send()

e Parameters:
— Queue Pair - QP

— Pointer to linked list of Send Work Requests — SWR
— Pointer to bad SWR in list in case of error

e Return value:

== 0 all SWRs successfully added to send queue (SQ)
1= 0 error code

Bottom-up client break-down phase &)

e ———

rdma_disconnect() - destroy connection to remote server
Ibv_dereg_mr() - destroy struct ibv_mr — memory region
rdma_destroy qp() - destroy struct ibv_gp — queue pair
Ibv_destroy cp() - destroy struct ibv_cq — completion queue
Ibv_dealloc_pd() - deallocate struct ibv_pd — protection domain
rdma_destroy id() - destroy struct rdma_cm_id — identifier

www.openfabrics.org 24

— — _— o~

izl

g |

-l

ke

; "

-

© 2011 OpenFabrics Alliance, Inc 6/13/2011 25

I\/I u Iti CaSt OPENFS

ALLIANCE

 Optional to implement in IB CAs and switches

« Uses Unreliable Datagram (UD) mode
— Only Send/Recv operations allowed
— Both sides must actively participate in data transfers

« Receiver must have RECV posted for next SEND
« Receiver must process each RECV completion
« Only possible with IB, not IWARP

© 2011 OpenFabrics Alliance, Inc 6/13/2011 26

Programming Course — The Big Picture

ap

recw_cq

send_cq

serld_cq__l:hannel

I
recw__cq_channel

b -

ibwv_comp

— chanmnel —»{
channel

ibv context

ibv_device

ibv_send_wr

F—sg_ list m

ibv_send_wr

T o

www.openfabrics.org

channel >| rdma_event_channel

ibvw_context_ops

ibv_dewvice__ops

Future OFA Software Training Course op&)mmmcs

— —— — -
————— e . —

o System Administration
— System configuration
— Cluster optimization
« Advanced Programming topics
— Kernel level programming
 ULP Training
— MPI

— RDS
— SRP

www.openfabrics.org 28

» Available quarterly at the University of New Hampshire

Interoperability Lab (UNH-IOL)

— January 18-19, 2012 — OFA Programming Course
January 20, 2012 — Free Ski Trip to Loon Mountain

— March 13-14 2012 — OFA Programming Course
— Registration: https://www.openfabrics.org/resources/training/training-offerings.html

The course can be presented at your company location

— Additional fees apply for travel and equipment required to support the training
materials and exercises.

— Minimum of 8 attendees required
— Europe and Asia supported in addition to USA

New for 2012, the course will be made available via Webinar

— This is a 4 day course made available for developers in Asia and other countries
requiring extensive travelling

— Minimum of 8 attendees required

For more information contact: rsdance@soft-forge.com

www.openfabrics.org

29

http://www.iol.unh.edu/services/testing/ofa/index.php
https://www.openfabrics.org/resources/training/training-offerings.html
mailto:rsdance@soft-forge.com

	OFA Training Program
	Agenda – OFA Training Program	
	Slide Number 3
	Instructors
	Programming Course Format
	Programming Course Requirements
	Programming Course Syllabus
	UNH Interoperability Lab
	Linux
	OFA Software Benefits
	Conventional I/O versus RDMA I/O
	Address Translation
	Many apps, one interface, three wires
	Slide Number 14
	Programming Course Sample
	Programming Course - OFED Verbs
	Programming Course – Data Structures
	Bottom-up client setup phase
	Slide Number 19
	Slide Number 20
	Gather during ibv_post_send()
	Send Work Request (SWR)
	Posting to send data
	Bottom-up client break-down phase
	Multicast concept
	Multicast
	Slide Number 27
	Future OFA Software Training Course	
	OFA Programming Course Availability

