
1

OpenSoC Fabric
An open source, parameterized,

network generation tool

David Donofrio, Farzad Fatollahi-Fard,

George Michelogiannakis, John Shalf

OpenFabrics Alliance – Monterey, UCA

March 17, 2015

CoDEx

Technology Investment Trends

‣ 1990s – R&D in computing dominated by desktop

market

‣ 2000’s – R&D investments moving rapidly towards

consumer electronics and embedded

2

Image below From Tsugio Makimoto: ISC2006

Trends continue today…

3

IDC 2010 Market Study

Building an SoC for HPC

‣ Consumer market dominates PC and server market

• Smartphone and tablets are in control

• Huge investments in IP, design practices, etc.

‣ HPC is power limited (delivered performance/watt)

• Embedded has always been driven by max
performance/watt (max battery life) and minimizing cost

‣ HPC and embedded requirements are now aligned

• …and now we have a very large commodity ecosystem

‣ Why not leverage technologies for the embedded
and consumer for HPC?

 4

Is this a good idea?

5

Looking back…
Some previous HPC system designs based on

semi-custom SoCs

Applying Embedded to HPC (climate)

‣ ~2 million horizontal subdomains

‣ 100 Terabytes of Memory

• 5MB memory per subdomain

‣ ~20 million total subdomains

• Nearest-neighbor communication

‣ New discretization for climate model

• CSU Icosahedral Code

Must maintain 1000x faster than real time for
practical climate simulation

fvCAM

Icosahedral

200km
Typical

resolution of
IPCC AR4
models

25km
Upper limit of

climate
models with
cloud param

~2km
Cloud system

resolving models
transformational

fvCAM Icosahedral

Green Flash

7

‣ 167,772,162 vertices at

~2 km

‣ Rectangular, 2-D

decomposition

• 2,621,440 horizontal

domains

• 20,971,520 vertical

domains

‣ 28 PF Sustained

‣ 1.8 PB Memory

A full system design

System Arch 45nm 22nm

Cores per Chip 128 512

Clock Freq 650 MHz 650 MHz

Gflops / core 1.3 1.3

Cache / core 256 KB 256 KB

Gflops / chip 166 666

Subdomains /

chip
4 x 4 x 8 8 x 8 x 8

Total Cores 20,971,520 20,971,520

Total Chip

count
163,840 40,960

Press (is out of control)

8

Green Wave
Apply principles of Green Flash to a new problem – 2009-
2012

‣ Seismic imaging used

extensively by oil and gas

industry

• Dominant method is RTM

(Reverse Time Migration)

‣ RTM models acoustic wave

propagation through rock

strata using explicit PDE solve

for elastic equation in 3D

• High order (8th or more) stencils

• High computational intensity

Green Wave Design Study

Seismic Imaging

Performance Energy Efficiency

Embedded

Design library

Embedded

Design library

Green Wave Inc.

2010

Embedded SoC Efficiency Competitive with

cutting-edge designs

! "
#"

$! "
$#"
%! "
%#"
&! "
&#"
' ! "
' #"
#! "

() * " +, -. /" 01 " () * " +, -. /" 01 "

234"5 -6, -" $%34"5 -6, -"

!
"
#
$%
&'
('
()

*

3.5x
4x

Fermi without host

7.6x
8x

Green Wave Inc.

2010

So what does this cost?

12

‣ Current established (Not
Bleeding Edge!) process

‣ Large (near reticle limit) die
size

‣ Vendors understand what
you are doing, trust your
competence

‣ $5M NRE to Silicon
Integrator (eSilicon, GUC,
etc.)

• Physical design

• Package design

• Test design

• Mask & proto charges

Total cost: $20 Mil using the assumptions below:
(Courtesy Marty Deneroff, Green Wave, Inc.)

‣ $5M for IP

‣ $2M for CAD tools

‣ $8M for engineering salaries

and expenses

• 20% architecture / logic design

• 20% system software

development

• 30% Design Verification

• 30% Floorplanning / placement

/ vendor engagement

Green Wave Chip Block Diagram

13

‣ 12 x 12 2D on-chip torus network

‣ 676 Compute cores (500 in
compute clusters, 176 in
peripheral clusters)

‣ 33 Supervisory cores

‣ 1 PCI express interface

‣ 8 Hybrid Memory Cube (HMC)
interfaces

‣ 1 Flash controller

‣ 1 1000BaseT Ethernet controller

‣ It is not anticipated that all cores
will be utilized – some are spares
for yield enhancement.

Courtesy Marty Deneroff, Green Wave, Inc.

10

Example: Green Wave Chip Block Diagram

• 12 x 12 2D on-chip torus network

• 676 Compute cores (500 in compute

clusters, 176 in peripheral clusters)
• 33 Supervisory cores

• 1 PCIexpress interface (16 bit Gen 3)

• 8 Hybrid Memory Cube (HMC) interfaces

• 1 Flash controller

• 1 1000BaseT ethernet controller

It is not anticipated that all cores will be

utilized – some are spares for yield

enhancement.

Inspiration from the Embedded

Market

‣ Have most of the IP and experience with for low-power
technology

• Have sophisticated tools for rapid turn-around of designs

‣ Vibrant commodity market in IP components

• Change your notion of “commodity”!

• It’s commodity IP on the chip (not the chip itself!)

‣ Design validation / verification dominate cost

‣ Convergence with HPC requirements

• Need better computational efficiency and lower power
with greater parallelism

15

Integration is Key
What if we had method of quickly integrating the

IP that is readily available for the embedded

market?

Embracing Integration

‣ Future chips will have many lightweight cores

for computation

• Power per core will drop to mW – does not imply

energy efficiency

• Similar to embedded cores…

‣ Integrated IP will differentiate processors

• Also efficiency gains in what we do not include

‣ Need powerful networks to connect cores to

memory(s), external IO and each other

 16

What happens when you stop caring about core power

Building an SoC from IP Logic Blocks
It’s Legos with a some extra integration and verification cost

Processor Core (ARM, Tensilica, RISC-V, etc)

With possible HPC extensions like DP FPU, ECC

OpenSoC Fabric (on-chip network)

(currently proprietary ARM or Arteris)

DDR memory controller

(Denali/Cadence, SiCreations)

+ Phy & Programmable PLL

PCIe Gen3 Root complex

Integrated FLASH Controller

10GigE or IB DDR 4x Channel

Mem

Control

Mem

Control

Memory
DRAM

Memory
DRAM

P
C

Ie

F
L
A

S
H

C
o
n
tro

l

IB
 o

r

G
ig

E

IB
 o

r

G
ig

E

Network on Chip Overview

AXI
OpenSoC

Fabric
CPU(s)

HMC

AX
I

A
XI

CPU(s)

AXI CPU(s)

A
X

I
CPU(s)

AX
I

CPU(s)
A

X
I

AX
I

1
0
G

b
E

P
C

Ie

SoC - NoC Topology Examples
Some common topologies

Hierarchical Power Costs

20

Data movement is the dominant power cost

120 pJ

2000 pJ

250 pJ

~2500 pJ

100 pJ

6 pJ

Cost to move data off chip to a

neighboring node

Cost to move data off chip into DRAM

Cost to move off-chip, but stay within the

package (SMP)

Cost to move data 20 mm on chip

Typical cost of a single floating point operation

Cost to move data 1 mm on-chip

Network Architecture Impact
Topology choice influences application performance

An analysis of on-chip interconnection networks for large-scale chip multiprocessors

ACM Transactions on computer architecture and code optimization (TACO), April 2010

What tools exist for NoC research

‣ Software models

• Fast to create, but
plagued by long
runtimes as system
size increases

‣ Hardware emulation

• Fast, accurate evaluate
that scales with system
size but suffers from
long development time

What Tools Do We Have to Evaluate Large, Complex
Networks of Cores?

A complexity-effective architecture for accelerating full-

system multiprocessor simulations using FPGAs. FPGA

2008

Software Models

23

‣ Booksim

• Cycle-accurate

• Verified against RTL

• Few thousand cycles

per second

‣ Garnet

• Event driven

• Simulation speed limits

designs to 100’s of

cores

C++ based on-chip network simulators

Booksim ISPASS 2013

GARNET ISPASS 2009

Hardware Models

24

‣ Stanford open-

source NoC router

• Verilog

• Precise but long

simulation times

‣ Connect network

generation

• Bluespec

• FPGA Optimized

HDL network generators and implementations

CONNECT: fast flexible FPGA-tuned networks-on-chip.

CARL 2012

OpenSoC Fabric

25

‣ SoC technology gaining momentum
in HPC

• On-chip networks evolving from simple
crossbar to sophisticated networks

• Need new tools and techniques to
evaluate tradeoffs

‣ Chisel-based

• Allows high level of parameterization

- Dimensions, topology, VCs, etc. all
configurable

• Fast, functional SW model with SystemC
integration

• Verilog model for FPGA and ASIC flows

‣ Multiple Network Interfaces

• Integrate with Tensillica, RISC-V, ARM,
etc.

AXI
OpenSoC

Fabric
CPU(s)

HMC

AX
I

A
XI

CPU(s)

AXI CPU(s)

A
X

I

CPU(s)

AX
I

CPU(s)

A
X

I

AX
I

1
0
G

b
E

P
C

Ie

An Open-Source, Flexible, Parameterized, NoC

Generator

Chisel: Hardware DSL

‣ Chisel provides both
software and hardware
models from the same
codebase

‣ Object-oriented
hardware development

• Allows definition of
structs and other high-
level constructs

‣ Powerful libraries and
components ready to
use

‣ Working processors
fabricated using Chisel

Constructing Hardware In a Scala Embedded Language

Verilog

FPGA ASIC

Hardware

Compilation

Software

Compilation

SystemC

Simulation

C++

Simulation

Scala

Chisel

27

OpenSoC Configuration

‣ OpenSoC configured at run time through Parameters

class

• Declared at top level, sub modules can add / change

parameters tree

‣ Not limited to just integer values

• Leverage Scala to pass functions to parameterize module

creation

- Example: Routing Function constructor passed as parameter to

router

28

OpenSoC is a fully configurable hardware generator

Configuration options

29

‣ Network Parameters

• Dimension

• Routers per dimension

• Concentration

• Virtual Channels

• Topology

• Queue depths

• Routing Function

A few of the current run time configuration parameters

‣ Packet / Flit Parameters

• Flit widths

• Packet types / lengths

‣ Testing Parameters

• Pattern

- Neighbor, random,

tornado, etc

• Injection Rate

Highly modular architecture supports FUB

replacement

Developing

30

‣ Modules have a

standard interface

that you inherit

‣ Development of

modules is very

quick

• Flattened Butterfly

took 2 hours of

development

Incredibly Fast Development Time

abstract class Allocator(parms: Parameters)

 extends Module(parms) {

 val numReqs = parms.get[Int]("numReqs")

 val numRes = parms.get[Int]("numRes")

 val arbCtor = parms.get[Parameters=>Arbiter]

 ("arbCtor")

 val io = new Bundle {

 val requests = Vec.fill(numRes)

 { Vec.fill(numReqs)

 { new RequestIO }.flip }

 val resources = Vec.fill(numRes)

 { new ResourceIO }

 val chosens = Vec.fill(numRes)

 { UInt(OUTPUT, Chisel.log2Up(numReqs)) }

 }

}

class SwitchAllocator(parms: Parameters)

 extends Allocator(parms) {

 // Implementation

}

Results

31

4x4 DOR Mesh of Single Concentration with Uniform
Random Traffic

Head Flit Latency

8x8 Dimension-Ordered Mesh

Concentration 1

32

More Information and Download
http://www.opensocfabric.org

Join us for an SoC for HPC workshop

at DAC 2015

http://www.opensocfabric.org

