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Technology Investment Trends 

‣ 1990s – R&D in computing dominated by desktop 

market 

‣ 2000’s – R&D investments moving rapidly towards 

consumer electronics and embedded 
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Image below From Tsugio Makimoto: ISC2006 



Trends continue today… 
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IDC 2010 Market Study 



Building an SoC for HPC 

‣ Consumer market dominates PC and server market 

• Smartphone and tablets are in control 

• Huge investments in IP, design practices, etc. 

‣ HPC is power limited (delivered performance/watt) 

• Embedded has always been driven by max 
performance/watt (max battery life) and minimizing cost 

‣ HPC and embedded requirements are now aligned 

• …and now we have a very large commodity ecosystem 

‣ Why not leverage technologies for the embedded 
and consumer for HPC? 
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Is this a good idea? 
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Looking back… 
Some previous HPC system designs based on 

semi-custom SoCs 



Applying Embedded to HPC (climate) 

‣ ~2 million horizontal subdomains 

‣ 100 Terabytes of Memory 

• 5MB memory per subdomain 

‣ ~20 million total subdomains  

• Nearest-neighbor communication 

‣ New discretization for climate model 

• CSU Icosahedral Code 

 

Must maintain 1000x faster than real time for 
practical climate simulation 

fvCAM 

Icosahedral 

200km 
Typical 

resolution of 
IPCC AR4 
models 

25km 
Upper limit of 

climate 
models with 
cloud param 

~2km 
Cloud system 

resolving models 
transformational 
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Green Flash 
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‣ 167,772,162 vertices at 

~2 km 

‣ Rectangular, 2-D 

decomposition 

• 2,621,440 horizontal 

domains 

• 20,971,520 vertical 

domains 

‣ 28 PF Sustained 

‣ 1.8 PB Memory 

 

A full system design 

System Arch 45nm 22nm 

Cores per Chip 128 512 

Clock Freq 650 MHz 650 MHz 

Gflops / core 1.3 1.3 

Cache / core 256 KB 256 KB 

Gflops / chip 166 666 

Subdomains / 

chip 
4 x 4 x 8 8 x 8 x 8 

Total Cores 20,971,520 20,971,520 

Total Chip 

count 
163,840 40,960 



Press (is out of control) 
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Green Wave 
Apply principles of Green Flash to a new problem – 2009-
2012 

‣ Seismic imaging used 

extensively by oil and gas 

industry 

• Dominant method is RTM 

(Reverse Time Migration) 

‣ RTM models acoustic wave 

propagation through rock 

strata using explicit PDE solve 

for elastic equation in 3D 

• High order (8th or more) stencils 

• High computational intensity 

 



Green Wave Design Study 

Seismic Imaging 

Performance Energy Efficiency 

Embedded 

Design library 

Embedded 

Design library 

Green Wave Inc. 

2010 



Embedded SoC Efficiency Competitive with 

cutting-edge designs 
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So what does this cost? 
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‣ Current established (Not 
Bleeding Edge!) process 

‣ Large (near reticle limit) die 
size 

‣ Vendors understand what 
you are doing, trust your 
competence 

‣  $5M NRE to Silicon 
Integrator (eSilicon, GUC, 
etc.) 

•  Physical design 

• Package design 

• Test design 

• Mask & proto charges 

Total cost: $20 Mil using the assumptions below: 
(Courtesy Marty Deneroff, Green Wave, Inc.) 

  
‣ $5M for IP 

‣ $2M for CAD tools 

‣  $8M for engineering salaries 

and expenses 

• 20% architecture / logic design 

• 20% system software 

development 

• 30% Design Verification 

• 30% Floorplanning / placement 

/ vendor engagement 



Green Wave Chip Block Diagram  
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‣ 12 x 12 2D on-chip torus network  

‣ 676 Compute cores (500 in 
compute clusters, 176 in 
peripheral clusters)  

‣ 33 Supervisory cores  

‣ 1 PCI express interface 

‣ 8 Hybrid Memory Cube (HMC) 
interfaces  

‣ 1 Flash controller  

‣ 1 1000BaseT Ethernet controller  

‣ It is not anticipated that all cores 
will be utilized – some are spares 
for yield enhancement.  

Courtesy Marty Deneroff, Green Wave, Inc. 
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Example: Green Wave Chip Block Diagram 

• 12 x 12 2D on-chip torus network 

• 676 Compute cores (500 in compute 

clusters, 176 in peripheral clusters) 
• 33 Supervisory cores 

• 1 PCIexpress interface (16 bit Gen 3) 

• 8 Hybrid Memory Cube (HMC) interfaces 

• 1 Flash controller 

• 1 1000BaseT ethernet controller 

It is not anticipated that all cores will be 

utilized – some are spares for yield 

enhancement. 



Inspiration from the Embedded 

Market 

‣ Have most of the IP and experience with for low-power 
technology 

• Have sophisticated tools for rapid turn-around of designs 

‣ Vibrant commodity market in IP components 

• Change your notion of “commodity”!  

• It’s commodity IP on the chip (not the chip itself!) 

‣ Design validation / verification dominate cost 

‣ Convergence with HPC requirements 

• Need better computational efficiency and lower power 
with greater parallelism  
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Integration is Key 
What if we had method of quickly integrating the 

IP that is readily available for the embedded 

market?  



Embracing Integration  

‣ Future chips will have many lightweight cores 

for computation 

• Power per core will drop to mW – does not imply 

energy efficiency  

• Similar to embedded cores… 

‣ Integrated IP will differentiate processors 

• Also efficiency gains in what we do not include  

‣ Need powerful networks to connect cores to 

memory(s), external IO and each other 
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What happens when you stop caring about core power 



Building an SoC from IP Logic Blocks 
It’s Legos with a some extra integration and verification cost 

Processor Core (ARM, Tensilica, RISC-V, etc) 

With possible HPC extensions like DP FPU, ECC 

OpenSoC Fabric (on-chip network) 

(currently proprietary ARM or Arteris) 

DDR memory controller 

(Denali/Cadence, SiCreations) 

+ Phy & Programmable PLL 

PCIe Gen3 Root complex 

Integrated FLASH Controller 

10GigE or IB DDR 4x Channel 

Mem 

Control 

Mem 

Control 

Memory 
DRAM 

Memory 
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Network on Chip Overview 
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SoC - NoC Topology Examples 
Some common topologies 



Hierarchical Power Costs 

20 

Data movement is the dominant power cost 

120 pJ 

2000 pJ 

250 pJ 

~2500 pJ 

100 pJ 

6 pJ 

Cost to move data off chip to a 

neighboring node 

Cost to move data off chip into DRAM 

Cost to move off-chip, but stay within the 

package (SMP) 

Cost to move data 20 mm on chip 

Typical cost of a single floating point operation 

Cost to move data 1 mm on-chip 



Network Architecture Impact 
Topology choice influences application performance 

An analysis of on-chip interconnection networks for large-scale chip multiprocessors 

ACM Transactions on computer architecture and code optimization (TACO), April 2010 



What tools exist for NoC research 

‣ Software models  

• Fast to create, but 
plagued by long 
runtimes as system 
size increases 

‣ Hardware emulation 

• Fast, accurate evaluate 
that scales with system 
size but suffers from 
long development time 

What Tools Do We Have to Evaluate Large, Complex 
Networks of Cores? 

A complexity-effective architecture for accelerating full-

system multiprocessor simulations using FPGAs. FPGA 

2008 

 



Software Models 
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‣ Booksim 

• Cycle-accurate 

• Verified against RTL 

• Few thousand cycles 

per second  

‣ Garnet 

• Event driven 

• Simulation speed limits 

designs to 100’s of 

cores 

C++ based on-chip network simulators 

Booksim ISPASS 2013 

GARNET ISPASS 2009 



Hardware Models 
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‣ Stanford open-

source NoC router 

• Verilog 

• Precise but long 

simulation times 

‣ Connect network 

generation 

• Bluespec 

• FPGA Optimized 

HDL network generators and implementations  

CONNECT: fast flexible FPGA-tuned networks-on-chip. 

CARL 2012 



OpenSoC Fabric 
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‣ SoC technology gaining momentum 
in HPC 

• On-chip networks evolving from simple 
crossbar to sophisticated networks 

• Need new tools and techniques to 
evaluate tradeoffs  

‣ Chisel-based  

• Allows high level of parameterization 

- Dimensions, topology, VCs, etc. all 
configurable 

• Fast, functional SW model with SystemC 
integration 

• Verilog model for FPGA and ASIC flows 

‣  Multiple Network Interfaces 

• Integrate with Tensillica, RISC-V, ARM, 
etc. 
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Chisel: Hardware DSL 

‣ Chisel provides both 
software and hardware 
models from the same 
codebase 

‣ Object-oriented 
hardware development 

• Allows definition of 
structs and other high-
level constructs 

‣ Powerful libraries and 
components ready to 
use 

‣ Working processors 
fabricated using Chisel 

 

Constructing Hardware In a Scala Embedded Language 

Verilog

FPGA ASIC

Hardware 

Compilation

Software 

Compilation

SystemC 

Simulation

C++ 

Simulation

Scala

Chisel
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OpenSoC Configuration 

‣ OpenSoC configured at run time through Parameters 

class 

• Declared at top level, sub modules can add / change 

parameters tree 

‣ Not limited to just integer values 

• Leverage Scala to pass functions to parameterize module 

creation 

- Example: Routing Function constructor passed as parameter to 

router 
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OpenSoC is a fully configurable hardware generator 



Configuration options 
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‣ Network Parameters 

• Dimension 

• Routers per dimension 

• Concentration 

• Virtual Channels 

• Topology 

• Queue depths 

• Routing Function 

A few of the current run time configuration parameters 

‣ Packet / Flit Parameters 

• Flit widths 

• Packet types / lengths 

‣ Testing Parameters 

• Pattern 

- Neighbor, random, 

tornado, etc 

• Injection Rate 

Highly modular architecture supports FUB 

replacement 

 



Developing 

30 

‣ Modules have a 

standard interface 

that you inherit 

‣ Development of 

modules is very 

quick 

• Flattened Butterfly 

took 2 hours of 

development 

 

Incredibly Fast Development Time 

abstract class Allocator(parms: Parameters) 

    extends Module(parms) { 

  val numReqs = parms.get[Int]("numReqs") 

  val numRes = parms.get[Int]("numRes") 

  val arbCtor = parms.get[Parameters=>Arbiter] 

    ("arbCtor") 

  val io = new Bundle { 

    val requests = Vec.fill(numRes)  

      { Vec.fill(numReqs) 

        { new RequestIO }.flip } 

    val resources = Vec.fill(numRes) 

      { new ResourceIO } 

    val chosens = Vec.fill(numRes) 

      { UInt(OUTPUT, Chisel.log2Up(numReqs)) } 

  } 

} 

class SwitchAllocator(parms: Parameters) 

    extends Allocator(parms) {  

  // Implementation 

} 



Results 
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4x4 DOR Mesh of Single Concentration with Uniform 
Random Traffic 

Head Flit Latency 

8x8 Dimension-Ordered Mesh 

Concentration 1 
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More Information and Download 
http://www.opensocfabric.org 

 

Join us for an SoC for HPC workshop  

at DAC 2015 

http://www.opensocfabric.org

