
Virtual RDMA devices

Parav Pandit
Emulex Corporation

Overview

• Virtual devices
– SR-IOV devices
– Mapped physical devices to guest VM (Multi Channel)
– Para virtualized devices
– Software based virtual devices

– Virtual device mapped to physical device

Overview

VF
VF

VF SR-IOV VF
0…N

PF

Adapter-1

VF
VF

VF UMC PF
0…N

PF

Adapter-2

Guest VM Guest VM

Hypervisor

pvdev

Guest VM

Para
virtual

dev

Guest VM

dev dev
dev Guest VM

dev

iSER/NFS-RDMA/
Ceph/P9/SMB

ULPs

Overview of RoCE/NIC
Interfaces (Dedicated QP1)

RoCE-NIC
Device

RoCE-NIC
Device

GSI QP1

Connection
Manager

Nic_Iface Nic_Iface HCA/NIC
Adapter (PF)

RoCE-NIC
Device

Nic_Iface

OS/Hypervisor
Driver IB Stack

QP QP QP

GSI QP1 GSI QP1

Multiple RoCE/NIC partitions
using interfaces
• NIC driver can create one or more adapter

specific Nic_Iface each having unique attributes
such as MAC address and/or vlan.

• Each such Nic_Iface translates to adapter
interface object at OS/Hypervisor level.

• One or more such interfaces can be created per
PF.

• Each Nic_Iface can host NIC RSS RQs.
• NIC traffic continues to operate based on the

existing Nic_Iface object including RSS support.

RoCE QP to Interface binding

• RoCE QPs are attached to one of the Nic_Iface
object during QP state transition.

• RoCE QP can be reused without destroying and
recreated to bind to different Nic_Iface.

• Supports accelerated (extensions) QP state
transitions to make QP usable for data traffic per
Nic_Iface.

• Every interface can host GSI QP1 based on the
Nic_Iface adapter interface object.

• QP1 need to scale with each adapter interface
object. There is better option that that.

Shared QP1 across multiple
NIC interfaces

Shared
GSI QP1

RDMA
Connection

Manager

Nic_Iface HCA/NIC PF
Adapter

Nic_Iface

OS/Hypervisor
Driver IB Stack

iSER/NFS-RDMA/
Ceph/P9/SMB

ULPs

QP QP

NIC RSS Qs
NIC Tx Qs

TCP/IP
Stack

RoCE device
NIC RSS Qs
NIC Tx Qs

NIC device NIC device

Shared QP1 across multiple
interfaces
• One GSI QP1 per port shared among multiple Nic_Iface.
• Scales well as number of interfaces grows.
• Filters QP1 packets on Nic_Iface basis.
• RoCE device driver connection manager performs

connection establishment, filtering for the right Nic_Iface
object.

• GSI QP1 accepts packets RoCEv1 and RoCEv2 packets
• Adapter parses QP1 packets and informs v1/v2 to

connection manager stack reducing the need to parse
the packets in host software driver.

• Connection manager supports RoCEv1 and RoCEv2
connections on per QP basis.

Linux vrdma overview

RoCE-NIC
Device

RoCE-NIC
Device

Shared
GSI QP1

Connection
Manager

Vlan_
Nic_Iface

Vlan_
Nic_Iface

HCA/NIC
Adapter (PF)

Primary
RoCE-NIC

Device

Nic_Iface

OS/Hypervisor
Driver IB Stack

iSER/NFS-RDMA ULPs

 QP QP QP

Linux
Container

Linux
Container

Device
cgroup

(extended
for RDMA
devices)

Virtual RDMA devices
• Multiple virtual RDMA devices are mapped to single

physical ibdev RDMA device
• Each virtual RDMA device is mapped to single

netdev structure
• Virtual device and physical device bound to same

physical netdev during creation time
• Virtual device uses the resource of the physical

devices (MR, PD, SRQ, QP)
• Network device movement from network

namespaces destroys the virtual RDMA devices
• Network namespace destroys virtual rdma devices

Role of cgroup vs virtual rdma
device
• Each virtual device can be provisioned for their

own resources (orthogonal to cgroups)
• Device cgroup is extended for resource

limitation of user space applications across
multiple rdma devices

• Virtual devices provides resource provisioning
for kernel consumers and their resources which
are not directly bound to user processes,
created/destroyed from threads, work_queues,
connection management event handlers.

New ibverbs Linux APIs

• Binding creates the virtual rdma device (libibverbs)
– ibv_create_virtual_ibdev(struct ib_device *pdev,
 char *netdev_name,
 char *new_ibdev_name);
– ibv_destroy_virtual_ibdev(char *virtual_ibdev_name);

• Configuration
– int ibv_provision_resources(struct ib_device *vdev,
 struct ib_resource_config *resources);
– Resources provisioning can be changed dynamically, provided it

doesn’t have consume all of them.
• Device flag to indicate virtual or physical flag

– Ib_get_device_type(struct ib_device *dev);
• New APIs for vendor drivers

– Ib_register_vdevice(struct ib_device *vdevice);
– Ib_unregister_vdevice(struct ib_device *vdevice);

Isolation and performance

• Application Isolation
– via ib_ucontext

• Virtual device object itself isolates itself in kernel
space from other devices

• Performance
– Same as physical device as every resource is mapped to

physical device resource
• No need to carve out or over provision resources

per VF and/or PF at device level, including MSI-X
vectors, GIDs etc.

• Isolation checks for VFs at adapter level can be
skipped bring simplicity to deployment and
configuration management at adapter level.

Challenges and future
extensions

– GSI QP1 extension
• Single QP1 to multiplex for virtual devices

– GID isolation
• Proxy GIDs for physical devices, to be omitted during

connection establishment.
– Interrupt moderation

– Single virtual device for multiple RDMA devices
– More higher level operations than just pure

SEND/WRITE/READs
– Virtual devices can be made usable beyond

containers to other hypervisor modes.

#OFADevWorkshop

Thank You

	Virtual RDMA devices
	Overview
	Overview
	Overview of RoCE/NIC Interfaces (Dedicated QP1)
	Multiple RoCE/NIC partitions using interfaces
	RoCE QP to Interface binding
	Shared QP1 across multiple NIC interfaces
	Shared QP1 across multiple interfaces
	Linux vrdma overview
	Virtual RDMA devices
	Role of cgroup vs virtual rdma device
	New ibverbs Linux APIs
	Isolation and performance
	Challenges and future extensions
	Thank You

