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Overview 

• Virtual devices 
– SR-IOV devices 
– Mapped physical devices to guest VM (Multi Channel)  
– Para virtualized devices 
– Software based virtual devices 

 
– Virtual device mapped to physical device 
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Overview of RoCE/NIC 
Interfaces (Dedicated QP1) 
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Multiple RoCE/NIC partitions 
using interfaces 
• NIC driver can create one or more adapter 

specific Nic_Iface each having unique attributes 
such as MAC address and/or vlan. 

• Each such Nic_Iface translates to adapter 
interface object at OS/Hypervisor level. 

• One or more such interfaces can be created per 
PF. 

• Each Nic_Iface can host NIC RSS RQs. 
• NIC traffic continues to operate based on the 

existing Nic_Iface object including RSS support. 



RoCE QP to Interface binding 

• RoCE QPs are attached to one of the Nic_Iface 
object during QP state transition. 

• RoCE QP can be reused without destroying and 
recreated to bind to different Nic_Iface. 

• Supports accelerated (extensions) QP state 
transitions to make QP usable for data traffic per 
Nic_Iface. 

• Every interface can host GSI QP1 based on the 
Nic_Iface adapter interface object. 

• QP1 need to scale with each adapter interface 
object. There is better option that that. 
 



Shared QP1 across multiple 
NIC interfaces 
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Shared QP1 across multiple 
interfaces 
• One GSI QP1 per port shared among multiple Nic_Iface. 
• Scales well as number of interfaces grows. 
• Filters QP1 packets on Nic_Iface basis. 
• RoCE device driver connection manager performs 

connection establishment, filtering for the right Nic_Iface 
object. 

• GSI QP1 accepts packets RoCEv1 and RoCEv2 packets 
• Adapter parses QP1 packets and informs v1/v2 to  

connection manager stack reducing the need to parse 
the packets in host software driver. 

• Connection manager supports RoCEv1 and RoCEv2 
connections on per QP basis. 



Linux vrdma overview 
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Virtual RDMA devices 
• Multiple virtual RDMA devices are mapped to single 

physical ibdev RDMA device 
• Each virtual RDMA device is mapped to single 

netdev structure 
• Virtual device and physical device bound to same 

physical netdev during creation time 
• Virtual device uses the resource of the physical 

devices (MR, PD, SRQ, QP) 
• Network device movement from network 

namespaces destroys the virtual RDMA devices 
• Network namespace destroys virtual rdma devices 



Role of cgroup vs virtual rdma 
device 
• Each virtual device can be provisioned for their 

own resources (orthogonal to cgroups) 
• Device cgroup is extended for resource 

limitation of user space applications across 
multiple rdma devices 

• Virtual devices provides resource provisioning 
for kernel consumers and their resources which 
are not directly bound to user processes, 
created/destroyed from threads, work_queues, 
connection management event handlers. 



New ibverbs Linux APIs  

• Binding creates the virtual rdma device (libibverbs) 
– ibv_create_virtual_ibdev(struct ib_device *pdev, 
  char *netdev_name, 
  char *new_ibdev_name); 
– ibv_destroy_virtual_ibdev(char *virtual_ibdev_name); 

• Configuration 
– int ibv_provision_resources(struct ib_device *vdev,  
  struct ib_resource_config *resources); 
– Resources provisioning can be changed dynamically, provided it 

doesn’t have consume all of them. 
• Device flag to indicate virtual or physical flag 

– Ib_get_device_type(struct ib_device *dev); 
• New APIs for vendor drivers 

– Ib_register_vdevice(struct ib_device *vdevice); 
– Ib_unregister_vdevice(struct ib_device *vdevice); 
 
 

 



Isolation and performance 

• Application Isolation 
– via ib_ucontext 

• Virtual device object itself isolates itself in kernel 
space from other devices 

• Performance 
– Same as physical device as every resource is mapped to 

physical device resource 
• No need to carve out or over provision resources 

per VF and/or PF at device level, including MSI-X 
vectors, GIDs etc. 

• Isolation checks for VFs at adapter level can be 
skipped bring simplicity to deployment and 
configuration management at adapter level. 

 
 

 



Challenges and future 
extensions 

– GSI QP1 extension 
• Single QP1 to multiplex for virtual devices 

– GID isolation 
• Proxy GIDs for physical devices, to be omitted during 

connection establishment. 
– Interrupt moderation 

 
– Single virtual device for multiple RDMA devices 
– More higher level operations than just pure 

SEND/WRITE/READs 
– Virtual devices can be made usable beyond 

containers to other hypervisor modes. 
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