
Prototyping

Byte-Addressable NVM

Access

Bernard Metzler & Animesh Trivedi
IBM Zurich Research Laboratory

Agenda

• NVM host integration

– Status quo of DSA development

– The Storage Abstraction Layer

– OFA DSA user interfaces

– Other user interfaces

• NVM/RDMA networking integration

– Example prototypes

• Findings: New OFA interface requirements

• Outlook

March 15 – 18, 2015 #OFADevWorkshop 2

Recap from 2014

• Idea: Use OFA stack for local NVM access
– Integrate with OFA as just another verbs provider

• Benefits
Application private device channel (virtually unlimited

number)

Deep request queues / async. operations

Byte-level I/O

OFA Verbs API: well established interface

• Issues
o Inflexible memory registration/re-registration

o RDMA network access

March 15 – 18, 2015 #OFADevWorkshop 3

Host Integration: DSA

• Integrates with OpenFabrics industry

standard environment

• Direct Storage Access Driver (DSA)

– ‘DSA’ OFA module and ‘libdsa’ library

– Provides RDMA API for access to all

integrated flash resources at byte

granularity

• Storage Abstraction Layer

– Abstracts from device specifics

– Exports flash partitions

– Device I/O attached (local or network)

• Block Layer OFA kernel verbs client

– Supports legacy block I/O to NVM devices

March 15 – 18, 2015 #OFADevWorkshop 4

I/O

 OS

Application

NVM driver

DSA

OFA Core

DSA Lib

OpenFabrics Lib

registered buffer

mapped endpoint
resources: QP/CQ

0copy
I/O operation

IO

Flash card

registered NVM

DSA block
driver

File buffer

device
management

RDMA NW card

SALSA
xyz NW

attached flash

Storage Abstraction Layer

SSD SSD

Linux FS

Network link

Kernel

User

SAL: Storage Abstraction Layer

• Storage device interface
– Upcalls:

• register/unregister device

• register/unregister/change partition

• I/O and command completion(rv, *ctx)

• publish_region(*part, *attrs)

– Downcalls:
• sal_write(*part, off, len, *sl, *ctx)

• sal_read(*part, off, len, *sl, *ctx)

• sal_trim(*part, off, len, flags, *ctx)

• sal_reg_region(*part, *attrs)

• sal_modify_region(*part, *attrs)

• sal_dereg_region(*part)

– All fast path operations share context with provider
• Context with provider and caller private regions

• Aim at cache and multi-core efficiency

March 15 – 18, 2015 #OFADevWorkshop 5

NVM driver

DSA

OFA Core

DSA Lib

OpenFabrics Lib

Storage Abstraction Layer (SAL)

NVM driver NVM driver

SAL: Maintaining NVM Resources

• All storage providers register with

Storage Abstraction Layer

– Provider resource representation:

Partition [ID, length, rights]

– SAL exposes resources at /sys fs

• Storage resource reserved with OFA

subsystem: ibv_reg_mr() call

– Same as local DRAM registration

– Flash and local DRAM can be source or

sink of any RDMA operation

– Will allow for flash-to-flash read/write

operations

• Kernel DSA clients have function

call/RPC interface (not shown here)

• DSA/SAL maps between RDMA key,

len, off and partition ID, off, len

– During registration

– On any data operation, enforces

protection

March 15 – 18, 2015 #OFADevWorkshop 6

Storage Abstraction Layer

OpenFabrics/DSA

Storage Device B

free space

IO Memory Region
IO Memory Region

Partition: ID, length, rights

key 2, length, rights
key 3, length, rights

Storage Device A

free space

IO Memory Region

key 1, length, rights

Partition: ID, length, rights

DRAM Memory
Region

key 4, length, rights

RDMA

operation

Example local IO attached storage Example network attached

storage backend

NW
Link

Storage Box

DSA Application Interface:

Referencing NVM resources

March 15 – 18, 2015 #OFADevWorkshop

• Nothing different from DRAM access
– NVM resource described by [key, off, len]

• Single key space shared with DRAM reservations
– Both DRAM and (IO) NVM are registered with DSA

– On the fast path, DSA detects memory type by key

– SGL support: WR’s with mixed SGL’s possible (not yet
supported by DSA)

Payload HDR Payload

 NVM resource DRAM

NW packet to send

SGL
key 1, len, off

key 3, len, off
key 2, len, off

Example mixed SGL usage

Register Memory with mmap()/VA

• DSA/SAL : Storage resources in /sys file system

• User
– fd = open(/sys/……/partitions/f1/memory, O_RDWR)

– va1= mmap(NULL, 40960, PROT_NONE, fd, 0)

– Takes va1 to DSA OFA device for registration:
mr1 = ibv_reg_mr(dsa_pd, va1, …)

– Registers source/target va2 in DRAM:
mr2 = ibv_reg_mr(dsa_pd, va2, …)

– Makes and connects Queue Pair within DSA

– Posts READ/WRITE RDMA operations:
src=mr1, trgt=mr2

– Reaps work completions

– Persistent reservations can be replayed at system boot

• Extensible for
– storage <-> storage transfers

– Direct load/store into IO mem (work in progress)

March 15 – 18, 2015 #OFADevWorkshop 8

root@borus:/sys/class/iomem/scm_0# find .

.

./ctrl_if

./power

./partitions

./partitions/f0

./partitions/f0/id

./partitions/f0/free

./partitions/f0/perm

./partitions/f0/size

./partitions/f0/type

./partitions/f0/areas

./partitions/f0/memory

./partitions/f1

./partitions/f1/id

./partitions/f1/free

./partitions/f1/perm

./partitions/f1/size

./partitions/f1/type

./partitions/f1/areas

./partitions/f1/areas/a0

./partitions/f1/areas/a0/id

./partitions/f1/areas/a0/pid

./partitions/f1/areas/a0/uid

./partitions/f1/areas/a0/perm

./partitions/f1/areas/a0/size

./partitions/f1/memory

./device

./subsystem

./uevent

./dev_desc

./dev_type

root@borus: more ./partitions/f1/areas/a0/size

40960

root@borus:

DRAM IO MEM RDMA

root@borus:/sys/class/infiniband# ls

dsa0

root@borus:/sys/class/infiniband# ibv_devices

 device node GUID

 ------ ----------------

 dsa0 6473613000000000

Register Memory w/o VA

Not maintaining a VA may have its merits

1. RPC protocol between application and SAL

– post_send()/post_receive() between SAL and application

– RPC’s to discover NVM resources and make reservations

– SAL translates into/from SAL device down calls/upcalls

– Reservations visible in /sys file system as well

– Reservation RPC returns key to be used with DSA

– No VA: zero based addressing for given key

– Used by kernel clients, supported also at user level

o RPC mechanism shadows send/receive application usage,
tagged mesages would help

2. Alternative: File handle (not VA) for registration

– Needs extended memory registration semantics
– ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, int access);

– fi_mr_reg(…);

– Not supported yet

March 15 – 18, 2015 #OFADevWorkshop 9

DSA Work Completion Semantics

o Strictly ordered I/O execution/completion:
not supported by DSA/SAL: application or device duty

 Lazy Ordered completion: default

 Explicit unordered completion: work in progress

March 15 – 18, 2015 #OFADevWorkshop 10

Lazy Ordered Completion Explicitly Unordered Completion

SQ NW/Driver/FW Media CQ

1

3

2

ti
m

e

SQ Media CQ

WR1

WR2

WR3

CQE2

CQE3

CQE1 1

3

2

WR1

WR2

WR3

CQE2

CQE3

CQE1

NW/Driver/FW

Legacy File I/O Integration:

Block IO

• Block Driver: Kernel Verbs client

• Integrates DSA with Linux file system

• Multiple DSA QP’s for efficient

multi-core support

– Similar to Multi-Q-BIO

• Memory reservation via RPC protocol with SAL

– Send/Receive work requests with SAL peer

– Resource discovery (devices and partitions)

– Resource reservation (whole partition only)

– Reservations visible in /sys file system

• I/O throughput similar to user level verbs

• TRIM command supported

– dsa_rpc_trim(key, flags, length, offset) : currently send WR

– Asynchronous completion: currently RPC interface: receive WR

March 15 – 18, 2015 #OFADevWorkshop 11

NVM driver

DSA

OFA Core
DSA block

driver

Storage Abstraction Layer (SAL)

Linux FS

NVM driver

DSA: Supporting Load/Store to

 NVM

File I/O

Supported via DSA block device

• Load/store to mmap()’ed NVM

– mmap(PROT_READ|PROT_WRITE)

– Handling page faults

– Own page pool

– OFA kernel client

– Work in progress

March 15 – 18, 2015 #OFADevWorkshop 12

NVM device

mmap()ed
memory Region

DSA

Storage Abstraction Layer

Page Pool
OFA verbs

SAL IO request

page fault

load/store

msync()

Prototype NVM - RDMA Network

Integration
Some ways to integrate NVM with RDMA network

1. Bridging application
(Breaks end-to-end RDMA semantic)

1. User- or kernel-level verbs client
• DRAM buffer registered with DSA and RNIC

• Tolerable latency (user level app:
some I/O 65us + RDMA Read 3us + appl. 7us)

2. read/write mmap’ed file, register with RNIC
o Would bring in all pages

2. Fusing with RDMA NW stack
1. RDMA/NVM Appliance

2. In-kernel fusing with software
RDMA stack (see next page)

March 15 – 18, 2015 #OFADevWorkshop 13

RNIC

Application Bridge

DSA

NVM device

registered

memory

SAL I/O req’s

RDMA

Network

Power Storage Server

P8/8+

DRAM

Flash Device

RDMA
NIC

CAPI/PCI

CPU bypass
RDMA

Network
SW

RDMA

NVM - RDMA Network

Integration Prototype
• Splice SoftiWarp with NVM access

• Preserves RDMA end-to-end semantics
– Application reserves IO memory for RDMA

– Peer directly accesses via reservation key

– Direct remote READ/WRITE execution by siw

• Needs extensions
– RDMA provider (siw)

• IO memory registration similar to DSA

• rx + tx path: resolve IO memory, bail/resume

– SAL interface additions
• Downcalls

 inbound READ/WRITE: get_iomem(part, off, size, op, *ctx)

 after read/write finished: sync()

 if not longer referenced: put_iomem_page()

• Upcall

 complete get_iomem(): get_iomem_callback(err, off, *page, *ctx)

March 15 – 18, 2015 #OFADevWorkshop 14

DSA

Storage Abstraction Layer

NVM Device

SIW

Application

OFA verbs

Extended

SAL IF RDMA

READ/WRITE

Resource discovery/

mmap()

Example Operation (WRITE)

March 15 – 18, 2015 #OFADevWorkshop 15

Storage Abstraction Layer

SIW

Storage
Provider

Application

2

1

3

4

5

6

7 8

9

10

devices

• SIW requests/maintains current IO pages
– Pre-fetching if signaled by DDP

– Direct placement if page available, stall/resume otherwise

• Local Completion semantics
– Data ‘visible’ in provider, or data placed into persistence domain

– Currently completion if ‘visible’ since no completion
semantics selectable

• Head of line blocking if some I/O pages are ‘cold’
– RDMA UC Service: SIW/UDP version ready to be tested

1. Resource registration with SAL

2. Application mmap() of resource

3. ibv_reg_mr()

4. Resource key passed to peer

5. Peer WRITE access

6. SIW resolves IO mem

7. SAL request get_iomem(), siw bail-out

8. SAL upcalls with IO pages

9. SIW resumes placing data into IO pages

10. sync() with storage provider &

put_iomem_page()

kernel

I/O

Findings

• OFA infrastructure good fit for NVM access

• Incomplete wish list of API extensions

– Re-registration of persistent memory objects

– Selectable NVM access completion semantics

– Selectable NVM access completion ordering

– Registration of NVM w/o VA

– Zero based addressing from user space

– Larger key space (currently just 24 bit) preferred

– Command interface (e.g. explicit Trim support etc.)

March 15 – 18, 2015 #OFADevWorkshop 16

Outlook

• NVM integration part of Zurich IBM Research effort
for cloud stack optimization (jVerbs, DaRPC, siw,
HyV, Peregrine, …)

• DSA open sourcing
– Will come with example storage provider (fakes NVM

device/partitions in DRAM)

– We will add NVMe/SAL integration

– Working on load/store interface

• Further work towards NVM/network integration
– Consider open sourcing siw extensions

– Experiments with UC RDMA Flash access (UDP based
siw/NVM integration as already prototyped for radio-
astronomic SKA project)

March 15 – 18, 2015 #OFADevWorkshop 17

#OFADevWorkshop

Thank You

