

Exploring Linux NFS/RDMA

Shirley Ma and Chuck Lever, Oracle

The following is intended for information purposes, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.

- Performance and scaling opportunities
- How to harden Linux NFS/RDMA
- Moving forward together

Why NFS/RDMA?

- NFS on IPoIB works in Linux, but
 - Significant client-side resource requirements
 - Does not approach link speed
- Permanent storage advances
 - Better, larger caches
 - Persistent memory replacing spinning rust
- Can NFS/RDMA deliver better reliability, performance, and efficiency?

- Linux NFS/RDMA is unmaintained
 - Enterprise distros may support NFS client
 - But upstream, client is now broken
 - Upstream Linux NFS/RDMA server has known panics
- Oracle Solaris 11 NFS/RDMA client and server
 - Actively supported and stable
 - No non-IB RDMA transports

- Red Hat GlusterFS 3.2 server and client
 - No commercial support
 - NFSv3 only
- NFS-Ganesha server
 - 9p/RDMA, no NFS/RDMA
- Others?

Test Environment

- Hardware
 - 32GB, 6-core single socket, x86-64
 - Single ConnectX-2 QDR
- Software
 - NFS client: Linux 3.8.13 with NFS patches
 - NFS server: Solaris 11 update 1
- Switch
 - QDR InfiniBand

Functional Testing

- NFS functional tests
 - Basic functions cthon04
 - Interoperability cthon04, NFStests
 - IPv4/IPv6, endianness
 - Fuzz testing xfstests
- Challenges:
 - Alternate memory registration modes
 - Common and uncommon HCAs and transports

Performance Testing

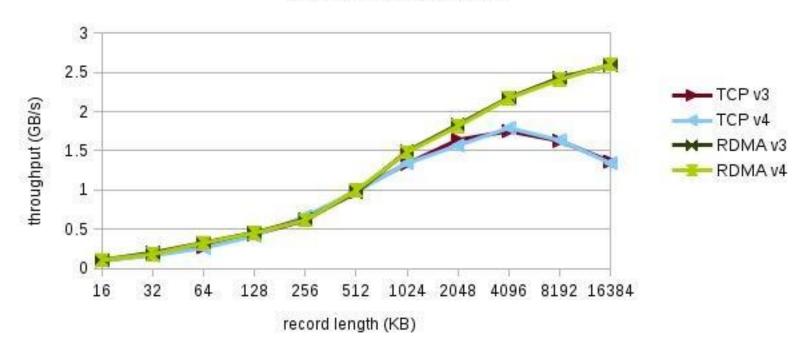
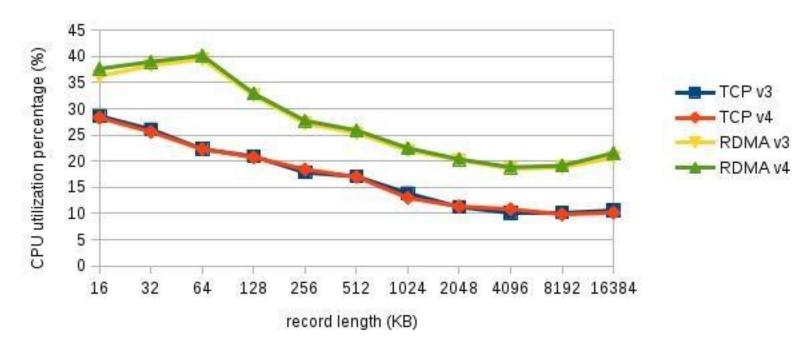

- Workload is IOzone
 - NFS share on tmpfs
 - Direct I/O
 - NUMA is disabled
- Metrics
 - Bandwidth
 - Round-trip latency
 - CPU efficiency
 - Interrupt load

Figure 1

Single Reader IOzone Throught

mount wsize,rsize=256K



12 readers IOzone CPU utilization

mount wsize,rsize=256K

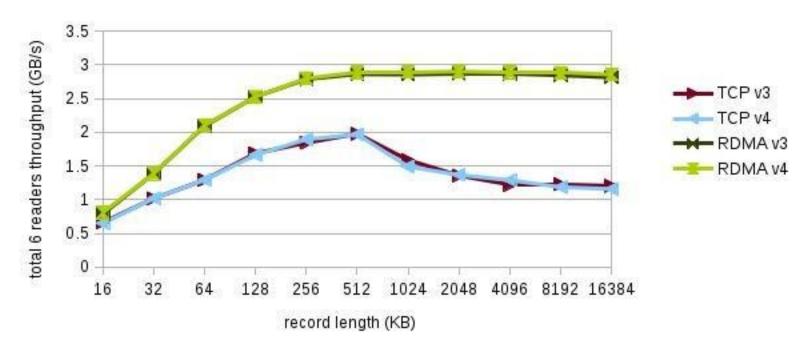


Figure 3

12 readers IOzone Throughput

mount wrize,rsize=256K

- Low-hanging fruit
 - Code path length and lock contention analysis
 - Larger maximum rsize and wsize
 - Interrupt mitigation
- Longer term
 - Multiple QPs per RPC transport instance
 - Predictable latency (NUMA)
 - New HCA capabilities

- NFSv4.1 backchannel, pNFS
- NFSv4 referral and FedFS support
- Virtualization containers, Xen, KVM, qemu

Potential Transport Features

- Alternate transports
 - InfiniBand
 - Legacy HCAs like mthca
 - Current and newer
 - iWARP
 - RoCE
- Connection and NFS server failure handling

- Linux NFS/RDMA supports seven memory registration modes
 - Multiplies implementation complexity
 - Introduces administrative complexity
 - Test coverage challenges
- Possible solutions:
 - Remove some memory registration modes
 - Deprecate support for older HCAs

- Usual approaches for NFS field troubleshooting:
 - Capture and analyze wire traffic
 - Add code probes
- For NFS/RDMA:
 - ibdump works only for Mellanox HCAs
 - Analysis tools don't yet dissect RPC/RDMA
 - Code probe bandwidth may be limited

Standards Work



- RFCs 5666 and 5667 (Talpey/Callaghan, 2010)
 - Implementation experience
- Potential protocol enhancements
 - Feature negotiation
 - More efficient READDIR
 - Allow more than one READ chunk per RPC

- Continuous testing resources
- Observability tools
- Features, bug fixes
- Flush existing patches to upstream
- Support for upstream Linux NFS/RDMA server

Open Discussion

Appendix

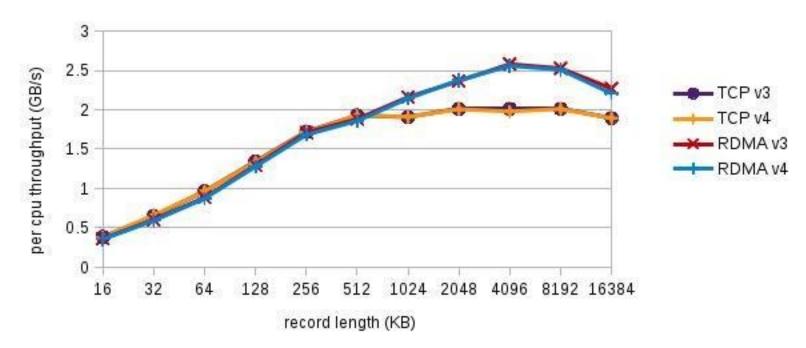
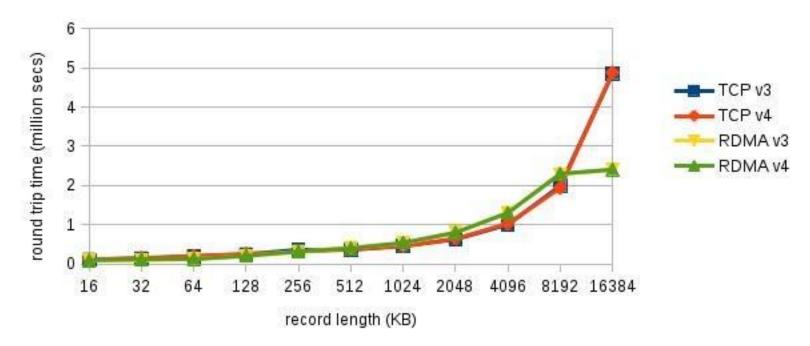


Figure 4

Per CPU Reader Throughput

mount wsize,rsize=256K



Single Reader Round Trip Time

mount wrize,rsize=256K

