

2013 OFA Developer Workshop DoD Cloud Computing

Virginia Watson Ross
Air Force Research Laboratory
Virginia.Ross@wpafb.af.mil
937-656-6980

Approved for public release, Distribution unlimited: 88ABW-2013-1845

Outline

- Introduction
- Cloud Computing Background
- Federal Government Cloud Computing
- Organizational Benefits Gained from Cloud Computing
- Summary

Introduction

- Rapid computer usage growth and Internet expansion along with growth in big data and analytics present opportunities for cloud computing
- Large IT investment for computing
 - Financial
 - Manpower
- Centralization of function via cloud computing
 - Economy of scale
 - Efficient resource usage
 - Availability to large user base
 - Agility to meet changing needs

Outline

- Introduction
- Cloud Computing Background
- Federal Government Cloud Computing
- Organizational Benefits Gained from Cloud Computing
- Summary

What is Cloud Computing?

- Computing resources held by provider
- Internet access to resources via PCs, laptops, smart phones, and PDAs
- Access to programs, storage, processing, and

applications development

- Precursors include:
 - Thin clients
 - Grid computing
 - Utility computing

NIST Definition of Cloud Computing

Cloud computing is

a model for enabling ubiquitous, convenient, ondemand network access to a shared pool of
configurable computing resources (e.g. networks,
servers, storage, applications and services) that can
be rapidly provisioned and released with minimal
management effort or service provider interaction.

Essential Cloud Characteristics

- On-demand self service
- Broad network access
- Resource pooling
- Rapid elasticity
- Measured service

DISA - IT Trends Enabling Cloud Computing

- Increased Parallelism
 - New Moore's Law 2X processors per chip generation
 - Parallel software industries emerging to address challenges
 - Redundant networks and storage increasing performance
- Increased Virtualization
 - Processing, Storage, Bandwidth, Delivery
- Commodity Components
 - X86 servers, consumer hard drives, ethernet
 - Open Source SW Freedom to customize and adapt
- Increased Outsourcing of Core Elements
 - Carbon Disclosure Project estimated cost savings to 2000 large US companies from cloud computing adoption to be \$12.3 B/year by 2020

Four Cloud Deployment Models

- Internal (private) cloud
 - Enterprise owned or leased
- Community cloud
 - Shared infrastructure for specific community
- Public cloud
 - Sold to the public, mega-scale infrastructure
- Hybrid cloud
 - Composed of two or more cloud types

Cloud Delivery Models

- Business Process as a Service (BPaaS)
 - Delivery of business processes through a cloud service model
- Software as a Service (SaaS)
 - Using provider's applications over a network
- Platform as a Service (PaaS)
 - Deploying customer applications to a cloud
- Infrastructure as a Service (laaS)
 - Lease processing, storage, network, and other computing resources
- Services above are all deployed on a cloud infrastructure

Global Cloud Market Growth

- Global cloud computing market to expand from \$40.7 billion in 2011 to \$241 billion in 2020.
- Global public cloud market growth
 - laaS peaking in 2014 at about \$5.9 billion
 - PaaS growing to around \$12 billion by 2017, then leveling off.
 - SaaS growing to around \$133 billion by 2020.
 - BPaaS growth to about \$10 billion by 2020.
 - Newer technologies replacing virtualization.

(Forrester Research, as cited in Dignan, 2011)

Outline

- Introduction
- Cloud Computing Background
- Federal Government Cloud Computing
- Organizational Benefits Gained from Cloud Computing
- Summary

Federal Government Cloud Strategy

- Federal Cloud Computing Strategy
 - Adopting cloud 1st policy, ¼ of \$80 B IT budget to clouds
 - 30% reduction in data centers
- DoD CIO's 10-Point Plan for IT Modernization
 - IT Modernization Strategy
 - Requires Partnerships Across DoD to achieve
- GSA launched Info.apps.gov to provide cloud computing information and services to federal agencies

Federal Cloud Computing Initiative

- Federal Cloud Computing Initiative (FCCI)
 - FCCI focuses on implementing cloud computing solutions for the Federal Government that increase operational efficiencies, optimize common services and solutions across organizational boundaries and enable transparent, collaborative and participatory government.
 - Improve agency access to cloud technology
 - Federal Data Center Consolidation Initiative (FDCCI), a collaborative approach for data center consolidation
 - Federal Risk and Authorization Management Program (FedRAMP) provides standard approach for cloud security assessment
 - Cloud computing definition (NIST)

Info.apps.gov

- http://info.apps.gov/by GSA for federal agencies
 - Federal CIO Promoting President's agenda to modernize Federal IT
- Business applications
- Productivity applications
- Cloud IT services
- SaaS, IaaS, PaaS

Air Force Cloud Computing

- IBM effort to Design and Demonstrate Mission-Oriented Cloud Architecture for Cyber Security (2010)
- Air Force Research Laboratory/Information Directorate
 - University Center of Excellence (UCoE) in Assured Cloud Computing
 - High Performance Cloud Auditing and Applications book scheduled to be published
 - Innovative Approaches to On-Demand Cloud Computing over Ad-Hoc Wireless Networks
 - Cloud/Grid/Virtualization Architecture for AF Weather SBIR
 - Secure, cloud-based information sharing framework
 - Secure Cloud Computing Environment for Infrared Data
 - HPC facility operates like cloud computing

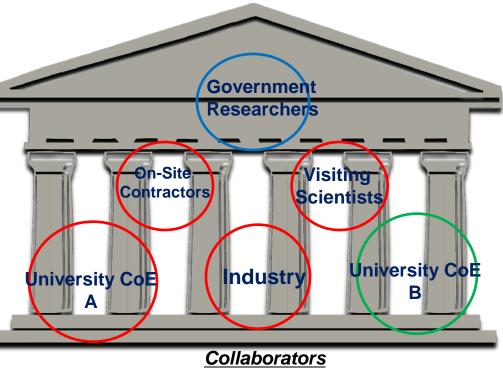
NASA Nebula Platform

- Cloud computing pilot program at NASA Ames
- Integrated open-source components into seamless, self-service platform
- Provided high-capacity computing, storage, and network connectivity
- Virtualized, scalable approach
- Cost and energy efficient
- Mission support
- Education and public outreach
- Nebula and Open Stack transitioning toward more commercial cloud usage (NASA Nebula, 2010)

NSF Supported Cloud Research

- Support for Cloud Computing in response to America Competes Reauthorization Act of 2010, Cloud Computing Research Enhancement
 - Emphasis on research in the following areas:
 - Computer Systems
 - Computer Networks
 - Security and Privacy
 - Algorithms and Data Management
 - Applications and Software Engineering
 - Computer Science Education

Cloud Comparison to DoD HPCMP



- DoD High Performance Computing Modernization Program (HPCMP) has supported:
 - Grid Computing
 - Centralized computing resources
 - Centralized authentication and security
- DoD HPCMP currently emphasizes support for parallel computing jobs with users knowledgeable about parallel proce
- DREN/SDREN network support

University Center of Excellence in Assured Cloud Computing

Center of Excellence Vision

- EQUAL co-sponsorship between AFOSR and the Information Directorate (RI)
- •Awarded to the University of Illinois at Urbana-Champaign for \$1M per year, 6 years
- Information Assurance research for cloud computing in a secure, timely and effective manner
- Assess and influence the predictability and performance of heterogeneous Air Force Networks
- Assured computing in dynamic, hostile, contested and high interference environments
- Responsive to Operational Needs; AFSPC Capability Need "Cyber Cloud Computing Infrastructure"

Government Cloud Strategy

- Meet growing computational needs
- Enhance reliability
- Centralize security
- 24/7 availability
- Adaptable to changing needs

Distributed Test Events

- Joint Mission Environment Test Capability (JMETC) provides infrastructure to link distributed facilities
- Incorporates Test and Training Enabling Architecture (TENA)
- Provides corporate infrastructure to capitalize on:
 - Network connections
 - Security agreements
 - Integration software
 - Interface definitions
 - Distributed test tools
 - Reuse repository (Hudgins, 2012)

Cloud Computing Advantages



- Support for data intensive computing
 - Index and Parallelize large data sets
 - Support low BW transmission by data preformatting
- Ease of use transfer complexity to cloud host
- Multi-user data access from large distributed cloud databases
- Default backup and cost effective archival for large data sets.
- Accessible any time, anywhere at low cost

Programming Models What's the right fit for DoD?

Appcomponents-asa-service

Softwareplatform-as-aservice Azure

Data Intensive
Amazon Hadoop, Public
Data Sets, Simple DB

Virtual-Infrastructureas-a-Service

amazon webservices™ Amazon Elastic Compute Cloud (Amazon EC2) - Beta

Physical infrastructure

Hardware Resources

GCDS Akamai

Compute

Storage

Networking

Content Delivery

Storage data charges of cloud computing providers (SaaS)

Vendor	Usage	Data transfer out	Data transfer in	No of requests
Amazon S3	\$0.15/GB	\$0.17/GB	No restrictions	\$0.01/1000 requests
AT&T Synaptic	\$0.25/GB	\$0.1/GB	\$0.1/GB	Nil
GoGrid	\$0.15/GB	No restrictions	No restrictions	No restrictions
Rackspace	\$0.15/GB	No restrictions	No restrictions	No restrictions

Prices shown for lowest usage tier and reduce with higher usage.

Source:

http://www.thecloudtutorial.com/cloudcomparison.html

Cost Savings

- Centralized resources and management yield economy of scale
- Cost reduction of 5-7x for power, network, operations, software, and hardware
- Reduced energy usage and higher utilization for green computing
- Capitalize on low cost locations

Need for Cloud Computing

- Provide resources not available to individual users
- Minimize up-front user expenses
- On demand availability, ability to handle surges
- Provider manages security
- Handle data intensive applications
- Mobile interactive applications
- Large parallel computing jobs
- Serve countries/organizations with limited resources
- Medical research
- Online gaming

Security Effectiveness

- Data integrity
- Commingling of data
- Virtualization
- Cost versus risk issues
- Multicore for data separation
- Social engineering and human error
- Remote access/authentication
- Strong, enforced security posture

Availability and Usability

- Proprietary software
- Portability between vendors
- Standards
- Software from open source community, such as OpenFabrics Alliance, can meet user needs

Cloud Adoption Study Implications

- Non-technical issues influence cloud computing adoption decisions.
- Consideration of the overall organizational impact of cloud computing is important.
- A complex interaction between vendors and potential customers, considering factors such as security, need, reliability, and cost, could maximize customer benefit.

Ross, 2010

Outline

- Introduction
- Cloud Computing Background
- Federal Government Cloud Computing
- Organizational Benefits Gained from Cloud Computing
- Summary

Summary

- Cloud computing offers numerous potential benefits to the DoD and the broader computing community
- Adoption of an efficient shared software infrastructure, such as supported by the OpenFabrics Alliance, can enhance high efficiency computing over a multitenant computing infrastructure

References

- Dignan, L. (2011). Cloud Computing Market: \$241 Billion in 2020. *Between the Lines*. Retrieved from http://www.zdnet.com/blog/btl/cloud-computing-market-241-billion-in-2020/47702
- Greenfield, T. (2009). Cloud Computing in a Military Context. DISA Office of the CTO. Retrieved from http://www.au.af.mil/au/awc/awcgate/disa/cloud_computing_military_context.ppt
- Hoover, J. N. (2009, May 12). Federal Budget Lays out Government Cloud Computing Plans. Information Week. Retrieved from http://www.informationweek.com/news/government/enterprisearchitecture/showArticle.jhtml?articleID=217400505
- Hudgins, G. (2012). TENA and JMETC, Enabling Integrated Testing in Joint Distributed LVC Environments. ITEA Cyber Conference 2012. Retrieved from http://www.itea.org/~iteaorg/images/pdf/Events/2012_Proceedings/2012_Cyber/t rack_2_hudgins_tenajmetcenablingintegratedtestinginjointdistributedlvcenvironments.pdf

References (continued)

- Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing. NIST Special Publication 800-145
- NASA Nebula (2010). Retrieved from nebula.nasa.gov
- National Science Foundation [NSF]. (2012). NSF Report on Support for Cloud Computing. Retrieved from http://www.nsf.gov/pubs/2012/nsf12040/nsf12040.pdf
- Ross, V. W. (2010). Factors Influencing the Adoption of Cloud Computing by Decision Making Managers. Capella University Doctoral Dissertation.
- Verdantix (2011). Carbon Disclosure Project Study 2011. Cloud Computing

 The IT solution for the 21st century. Retrieved from
 http://content.yudu.com/A1t6nj/Cloud Computing/resources/index.htm?referrerUrl=

Thank You

