

Ethernet over InfiniBand

Ali Ayoub, Mellanox Technologies April 2013

Goal

Goal

- Seamless Support for Ethernet Services over InfiniBand Network
 - IP and non-IP Applications
 - Virtualization (vSwitch)
 - 802.1Q
- Seamless Ethernet Management
 - DHCP, PXE, etc.
 - Load Balancing & High Availability
 - Unmodified Bonding/Teaming driver support
- Protocol may be distributed
 - Doesn't rely on central software/hardware manager
- Simple bridging between EoIB and Ethernet

What's New

	Ethernet	EoIB	IPolB
Ethernet Header	≻Present	≻Present	➢Not Present
Compatibility with L2- based apps	Seamless	Seamless	 Not Supported Needs special handling when using elPolB
MAC Setting	≻Any	≻Any	≻Limited: based on QPN and GID
MAC Length	≻6 bytes	≻6 bytes	≻20 bytes
Migration	➤Transparent to the netdev driver	➤Transparent to the netdev driver	➢Requires special handling
MTU	≻9К	➢Limited by IB mtu: 4K (in UD)	➢Limited by IB mtu: 4K (in UD)
VLAN ID	≻Any	≻Any	 IPoIB: Not Supported eIPoIB: Mapped to PKEY (1128 only, cannot exceed PKEY range)

Model

- Ethernet Overlay Network on top of InfiniBand Underlying Network (UD Transport)
- InfiniBand Network as a "giant" Virtual Ethernet Switch (VES)
- End points may have one or more Virtual Ports (vPort) connected to the VES
- A Virtual NIC (vNIC) represents the Ethernet Interface within the end-point, connected directly to the vPort
- A Gateway (GW) can be implemented the same way as a host with multiple pNIC/vNIC instances

Model

- VES is distributed; each vPort holds a Forwarding Database (FDB) table.
- Optionally, a VES manager can be used to push the FDB table to the end points
- A Gateway (GW) can be implemented the same as a host with multiple pNIC/vNIC instances

Packet Format

Address Resolution

- What's New:
 - Ethernet Link Layer (MAC) is decoupled from the underlying InfiniBand network
 - Allows using any MAC address; a must for virtualization models where the hypervisor is responsible for VM's MAC setting
 - EoIB is decoupled from ARP/NDP protocols
 - No dependency on the OS address resolution and Control Plane
 - Allows EoIB to have its own Control Plane and carry information/notifications not available in ARP/NDP
 - Learning

Address Resolution

- How it works:
 - Each end-point holds a Forwarding Database (FDB) table
 - The FDB is used to map the Ethernet packet based on MAC/VLAN to the corresponding InfiniBand Address Handle
 - FDB is updated based on ingress traffic learning as well as EoIB Control Plane
 - If mapping is missing, the packet is flooded (distributed mode)
 - Similar to VXLAN approach
- Egress Packet Flow:

FDB

- Construction:
 - Learn incoming traffic to map MAC/VLAN to a vPort
 - Same approach as physical Switch learning
 - Use EoIB Control Plane (vPort Request/Reply) to map vPort to IB Address
 - SA query is sent out to get the PathRecord based on the IB Address
- Scheme

Over Addr	·lay ·ess	Underlying Address	Phy	sical Ado	dress	-	
MAC	VLAN	vPort ID	QPN	LID	[GID]	L	For Link
			QPN	LID	[GID]		Aggregation
MAC	VLAN	vPort ID	QPN	LID	[GID]		
MAC	VLAN	vPort ID	QPN	LID	[GID]		

Ping Example

#OFADevWorkshop

Thank You

Backup

#OFADevWorkshop

SA Query

Multicast

	Table 19: Multicast GID Layout																																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Offset
Prefix																							00h										
PKEY										DMAC										04h													
DMAC														08h																			
Version Type NS Reserved0										VID								0Ch															

VES Instances

- Each PKEY defines a VES instance
- VES can serve multiple VLANs
 - VLAN and PKEY are decoupled
 - The administrator can limit the use of specific VLAN group for each VES instance for higher security