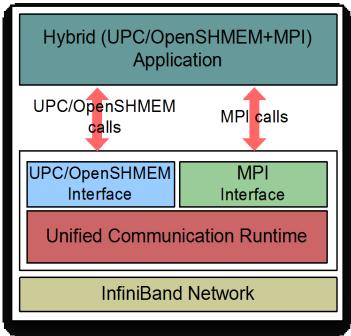
Scaling with PGAS Languages

Panel Presentation at OFA Developers Workshop (2013)

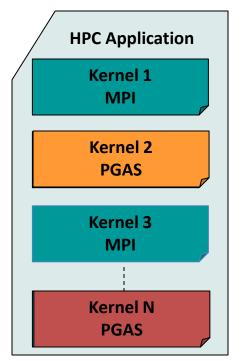
by

Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda


MVAPICH2/MVAPICH2-X Software

- High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP and RDMA over Converged Enhanced Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-3.0), Available since 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2012
 - Used by more than 2,000 organizations (HPC Centers, Industry and Universities) in 70 countries
 - More than 165,000 downloads from OSU site directly
 - Empowering many TOP500 clusters
 - 7th ranked 204,900-core cluster (Stampede) at TACC
 - 14th ranked 125,980-core cluster (Pleiades) at NASA
 - 17th ranked 73,278-core cluster (Tsubame 2.0) at Tokyo Institute of Technology
 - and many others
 - Available with software stacks of many IB, HSE and server vendors including Linux Distros (RedHat and SuSE)
 - <u>http://mvapich.cse.ohio-state.edu</u>
 - Partner in the U.S. NSF-TACC Stampede (9 PFlop) System

Overview of MVAPICH2-X


- Can support the following programming models over OFA verbs
 - PGAS
 - UPC
 - OpenSHMEM
 - MPI (with OpenMP)
 - Hybrid (MPI and PGAS)
 - MPI (w/ OpenMP) + UPC
 - MPI (w/ OpenMP) + OpenSHMEM
- Unified communication runtime allows flexible support for all these programming models
- Can be downloaded from

http://mvapich.cse.ohio-state.edu

Support for Flexible Hybrid (MPI+PGAS) Programming

- Application sub-kernels can be re-written in MPI/PGAS based on communication characteristics
- Benefits:
 - Best of Distributed Computing Model
 - Best of Shared Memory Computing Model
- Exascale Roadmap*:
 - "Hybrid Programming is a practical way to program exascale systems"

* The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011, International Journal of High Performance Computer Applications, ISSN 1094-3420

PGAS Models

Q: Shared Memory Models: "Of the models for distributed computing, what in your view is the significance of the recent emergence of PGAS languages?"

- PGAS models improve programmability
- Can improve performance of irregular applications
- Hybrid Programming models allow incremental application development using MPI+PGAS models

PGAS Runtime Implementation

Q: Implementing PGAS: "Each of you has looked at various implementations of interfaces for PGAS languages. How have you implemented the interface, and what has your experience been with it to date?"

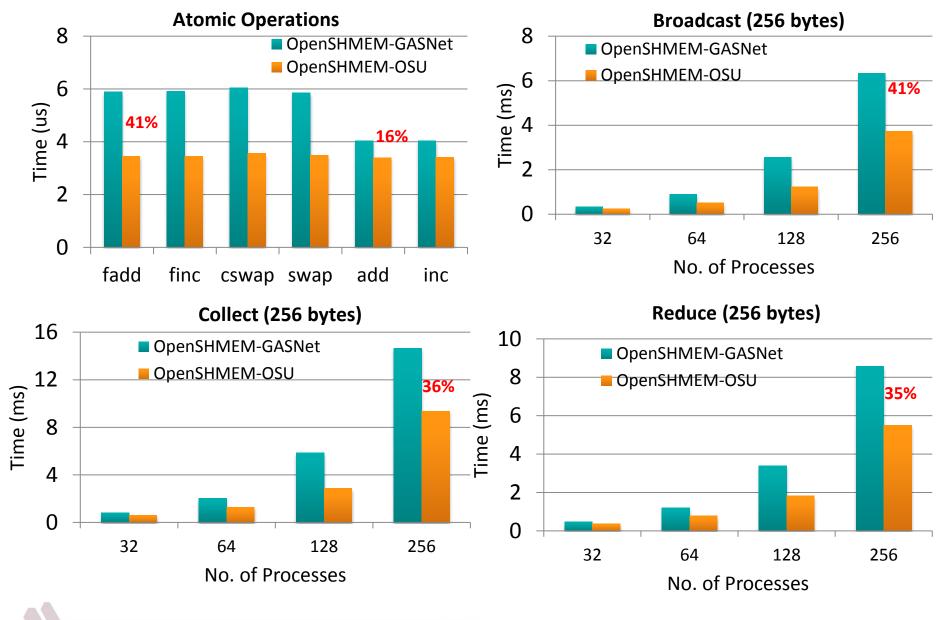
- Runtimes should provide flexibility to choose between PGAS and Message Passing semantics
- Runtimes for PGAS or Message Passing models have to address a core set of issues
- Critical to efficiently use network and memory resources
- MVAPICH2-X provides a unified runtime for hybrid MPI+PGAS models, offers deadlock-free communication progress across models, better performance and optimal network resource usage
- MVAPICH2-X UPC/OpenSHMEM bindings are implemented over active messages, one-sided operations, and atomic/synchronizations operations

Memory Consistency and Protection

Q: memory consistency: "UPC has a well defined memory consistency model governing the reading and writing characteristics of shared memory. What aspects of RDMA-capable networks have made conformity to this memory consistency model particularly challenging for UPC compilers?"

- UPC offers `strict' and `relaxed' modes
- Runtime can use RDMA completion events for implementing consistency modes

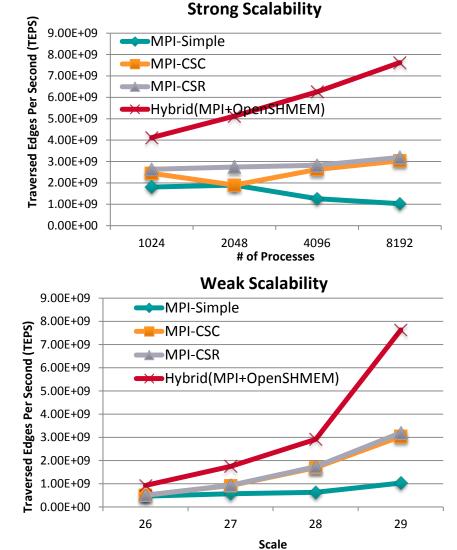
Q: Memory Protection: "Current IB architecture defines a system of memory keys which are exchanged between communicating partners. Is this an appropriate model to be used in PGAS implementations?"


- Registration cache in MVAPICH2-X alleviates registration costs
- Can register symmetric memory regions at initialization

Thread Safety in PGAS Runtime

Q: thread safety: "How important is it for a PGAS compiler that the API it uses for accessing the RDMA-capable network be thread safe?"


- Multi-end point design can enable thread-safety
- The multi-endpoint design offers more freedom to compiler
- Performance benefits with Multi-threaded Multi-Network Endpoint Runtime for UPC
 - M. Luo, J. Jose, S. Sur, and D. K. Panda, Multithreaded UPC Runtime with Network Endpoints: Design Alternatives and Evaluation on Multi-core Architectures, High Performance Computing (HiPC'11), December 2011


Micro-Benchmark Performance (OpenSHMEM)

OFA Developer Workshop (April '13)

Hybrid MPI+OpenSHMEM Graph500 Design

- Performance of Hybrid (MPI+OpenSHMEM) Graph500 Design
 - 2,048 processes
 - **1.9X** improvement over MPI-CSR (best performing MPI version)
 - 2.7X improvement over MPI-Simple (same communication characteristics)
 - 8,192 processes
 - 2.4X improvement over MPI-CSR
 - 7.6 X improvement over MPI-Simple

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid

MPI+OpenSHMEM Programming Models, International Supercomputing Conference (ISC'13), June 2013

OFA Developer Workshop (April '13)