
jVerbs: Java/OFED Integration
for the Cloud

www.openfabrics.org 1

Authors: Bernard Metzler, Patrick Stuedi, Animesh Trivedi.

IBM Research – Zurich

Date: 03/27/12



IBM Research - Zurich

Motivation

• The commodity Cloud is
– Flexible computing at large scale
– Network heavy
– Built out of commodity hardware
– Virtualized
– Using Java as a main programming model

• Cloud interconnect
– Commodity 10 GbE is there, more to come
– Low latency/high throughput puts burden on end hosts CPU

• Today’s Java network stack less efficient than native C program using sockets
• Cloud performance becomes I/O bound
• RDMA typically requires dedicated costly hardware

• Lets put things together
– Commodity RDMA stack + RDMA enabled Java
– Accelerate given Java applications and enable new RDMA inspired 

communication patterns



IBM Research - Zurich

Java and OFED/RDMA in Cloud

• Large scale
• Cost efficient
• Dynamic
• Flexible
• Virtualized

+ NW stack efficiency
- Explicit resource management
- Cost/dedicated hardware 

+ Flexibility
+ Portability
+ Core cloud programming model
- Network performance

THE
CLOUD

RDMA

?

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates. Other product and service names might be trademarks of IBM or other companies. 



IBM Research - Zurich

Some Network Stacks

ib core

libibverbs/
librdmacm

HCA/RNIC

user
application

kernel
application

IHV lib

IHV driver

OFA java.net.Socket

JVM

application

JNI

libc/send()

TCP/IP

L2 driver

NIC

java.nio.SocketChannel

JVM

application

JNI

libc/write()

TCP/IP

L2 driver

NIC

buffer copy

buffer copy

DMA

DMA

Fast Path:

• Zero copy, no CPU involved • Copy (1) from heap and (2) in TCP/Socket
• Potential malloc()
• CPU intensive

• Using directBuffers may avoid one copy
• Asynchronous, extended in NIO2
• Less CPU intensive

malloc()

Kernel

User

I/O

generic

vendor specific

OFA ‘mid layer’ Socket NIO/2



IBM Research - Zurich

Levels of RDMA/Java Integration

1. Use SDP Sockets

• Implicit RDMA deployment only
• Some RDMA benefits for all applications using NIO and java.net
• Application: no RDMA semantic available and no changes

2. Use JNI to attach to libibverbs/librdmacm
3. Full JVM integration of libibverbs/librdmacm
4. jVerbs: Re-write user space OFED mid layer as a jar library to 

seamlessly integrate with unchanged JVM

• Explicit RDMA deployment with one sided operations possible
• Availability of RDMA semantics can be tailored at API

1. Using Java sockets or NIO translates to implicit RDMA calls
2. NIO2: Match async. API semantics with native RDMA calls
3. New native RDMA: Provide RDMA verbs-like native API

A
vo

id
in

g 
th

e 
E

ffo
rt

D
oi

ng
 th

e 
In

te
gr

at
io

n



IBM Research - Zurich

JNI vs full JVM Integration of OFED

JNI:
• Java frontend providing verbs, and
• C backend to call ibverbs

+ Use OFED environment, no IHV dependencies
- Performance: JNI internal buffer copy, call 

marshalling

JVM extension:
• Java Verbs frontend
• Code directly calling libibverbs added to JVM

+ Performance: full integration into JVM
- JVM changes which are platform dependent
- Provider specific code in JVM

JVM

application

JNI Java frontend

JNI C backend

libibverbs/librdmacm lib<vendor>

OFED core vendor fast path

/dev/ib_verbs
/dev/rdma_cm

mapped HW objects

JVM

application

Java frontend

C++ backend

libibverbs/librdmacm lib<vendor>

OFED core vendor fast path

/dev/ib_verbs
/dev/rdma_cm

mapped HW objectsKernel

User



IBM Research - Zurich

jVerbs Basics

• jVerbs OFED Interface
– Implements OFED’s device I/O protocol
– Replaces generic libibverbs, librdmacm
– Contains vendor specific code

• Extends BaseDriverClass and overrides 
some methods

• Resource allocation/queue mapping
• Fast path to HW

– Generic fast path through /dev/ib_verbs
if supported by vendor

• Complete RDMA verbs API
– Native RDMA semantic available
– New Java applications leveraging RDMA
– Zero copy when using direct buffers

• jVerbs can implement NIO2 interfaces
– ‘nio2rdma’ library
– Direct mapping to async. CM and one-

sided RDMA operations 
– Allows seamless RDMA support for 

NIO2 applications

JVM

application

nio2rdma.jar

jverbs.jar

OFED core vendor fast path

/dev/ib_verbs
/dev/rdma_cm

mapped HW objects

per vendor

jVerbs:
• Regular Java library
• Implements functionality of libibverbs, 

librdmacm and lib<vendor>
• Provides verbs interface to application

+ No intermediate layers
+ Zero copy if application uses direct buffers
- Vendor specific code (as with OFED user code)

Kernel

User

RDMA
verbs

NIO2



IBM Research - Zurich

Prototype Implementation

• Software-only RDMA Stack fits Cloud needs
– Cheap and integrative for heterogonous hardware
– Flexible host resource mgmt (lazy memory

registration etc. possible)
– Good virtualization support - host-local and

host-to-host
• SoftiWARP or SoftRoCE?

– On given setup, siw with better performance
with large packets

• Plain 10GbE infrastructure (no CEE)
• GSO/GRO, checksum offload
• TCP better suited for (today's cloud)

non-CEE networks?
– siw with prototype lazy memory mgmt
– rxe better performance for small messages

(siw lacks user mapped queues)
• Fast path via generic OFED calls

– No QP/CQ mapping
– Minimum driver specific code
– How bad is 1 us extra for posting/reaping

work for a Java application?

JVM

application

nio2rdma.jar

jverbs.jar

/dev/ib_verbs
/dev/rdma_cm

Control and
Fast Path

siw
specific

Kernel

User

ib core

TCP/IP

siw driver

Kernel socket

Ethernet NIC



IBM Research - Zurich

jVerbs versus ibverbs

• Setup:
– siw as verbs provider (gitorious.org/softiwarp)
– Xeon E5540 @ 2.53GHz
– from java directBuffer: zero copy send application
– Bulk transfer tests (req/resp using RDMA READ’s)

• jVerbs performs on par with native C++ application using ibverbs

RDMA READ RDMA READ



IBM Research - Zurich

jVerbs versus TCP in Java

Java-only tests: Either via NIO2/TCP or NIO2/jVerbs
– Same throughput for large messages
– Significant CPU savings using jVerbs

• Zero copy transmit
• Caching of memory registration for direct buffers
• RDMA via siw



IBM Research - Zurich

Current and future Activities

• Reaching out for real RDMA hardware
– Started implementing IHV’s private fast path

• Looking into user mapped objects

– Estimate for jVerbs stack overhead
• First encouraging results for Chelsio T3

– Generic fast path through mid layer
– Some clever optimizations for

call marshalling
‼ Performance win compared to

libibverbs

• Mellanox mlx4 is next

• HadoopTM Distributed File System
as an application
– Written in Java with Java API

– Large block transfers

– Allow explicit usage of RDMA semantics



IBM Research - Zurich

lib<vendor>libibverbs/librdmacm
jverbs.jar

Findings and Suggestions

• Using generic fast path for SQ/RQ/CQ (post/reap):
– Some 100ns for empty system call might be well 

invested overhead for additional protection
– Minimizes HW dependencies
– Scaling: conserves host resources

(avoids mmap() and extra pinned memory etc.)
– Only costly for polling CQ
– All HW vendors might support it

• Current generic fast path from user space:
– Aims at translating it into kernel application call
– Creates ‘struct ib_send_wr’ out of user cmd
– Example post_send():

• kmalloc()’s and kfree()’s for transient objects
– for the current user WR
– repeated malloc() for each WR in an array of kernel WR’s

• opcode specific copy of parameters into WR
• Some discussion in the past (“RFC kernel path 

optimizations”) – status?

• Fast path could be optimized for IHV private
opaque pass-through of user level WR’s

jverbs.jar <vendor>

OFED core
optional

vendor fast path

/dev/ib_verbs
/dev/rdma_cm

Control and
generic

Fast Path

ib_uverbs_write(*filep, __user *buf, …) {

copy_from_user(&hdr, …)

ib_uverbs_post_send(buf + sizeof hdr, …) {
copy_from_user(&cmd, …)

u_wr = kmalloc(…)

for (cmd.wr_count) {

copy_from_user(u_wr, buf, …)

k_wr = kmalloc(…)

copy_params(k_wr, u_wr)

copy_from_user(k_wr->sg_list, …)

append(k_wr, k_wr_list)

}

device->post_send(k_wr_list, …)

for (cmd.wr_count)

kfree(k_wr)

kfree(u_wr)

}

}



IBM Research - Zurich

Summary

• Integration of OFED/Java
– Proposed another user space OFED ‘mid layer’ for Java

• Decouple OFED kernel from user components
• ‘cVerbs’ and ‘jVerbs’ OFED’s coexisting user space components..?

– No changes to the JVM
– Native Java-RDMA applications possible
– Async. NIO2 good match for RDMA communication
– Performance comparable to native libibverbs app’s.
– SW based RDMA stacks + jVerbs good fit for Cloud

• Current work
– Real HCA/RNIC
– Mapping RDMA provider specific resources
– Looking at Java cloud applications (HDFS)


