
RSOCKETS

Sean Hefty

Intel Corporation

Motivation (AKA the Problem)

More Specifically…

Programming to Verbs

struct ibv_device **dev_list;

struct ibv_context *ib_ctx = NULL;

struct ibv_device_attr dev_attr;

struct ibv_port_attr port_attr;

int i, p, ret;

dev_list = ibv_get_device_list(NULL);

if (!dev_list)

 error();

for (i = 0; dev_list[i]; i++) {

 ib_ctx = ibv_open_device(dev_list[i]);

 if (!ib_ctx)

 error();

 ret = ibv_query_device(ib_ctx, &dev_attr)

 if (ret)

 error();

Get a list of devices

and their attributes

More Specifically…

 for (p = 1; p < dev_attr.phys_port_cnt; p++) {

 ret = ibv_query_port(ib_ctx, i, &port_attr);

 if (ret)

 error();

 if (port_attr.state == IBV_PORT_ACTIVE)

 goto done;

 }

 ibv_close_device(dev_list[i]);

 ib_ctx = NULL;

}

done:

ibv_free_device_list(dev_list);

if (!ib_ctx)

 error();

Select a port and

get its attributes

More Specifically…

struct ibv_pd *pd;

struct ibv_comp_channel *comp_channel;

struct ibv_cq *cq;

pd = ibv_alloc_pd(ib_ctx);

if (!pd)

 error();

comp_channel = ibv_create_comp_channel(ib_ctx);

if (!comp_channel)

 error();

cq = ibv_create_cq(ib_ctx, min(min(MY_SQ_SiZE + MY_RQ_SIZE),

 dev_attr.max_qp_wr), dev_attr.max_cqe),

 NULL, comp_channel, 0);

if (!cq)

 error();

We need :

- protection domain

- completion channel

- completion queue

More Specifically…

struct ibv_qp *qp;

struct ibv_qp_init_attr qp_init_attr;

qp_init_attr.send_cq = cq;

qp_init_attr.recv_cq = cq;

qp_init_attr.cap.max_send_wr = min(MY_SQ_SIZE, dev_attr.max_qp_wr / 2);

qp_init_attr.cap.max_recv_wr = min(MY_RC_SIZE, dev_attr.max_qp_wr / 2);

qp_init_attr.cap.max_send_sge = min(MY_SQ_SGE, dev_attr.max_sge);

qp_init_attr.cap.max_recv_sge = min(MY_RQ_SGE, dev_attr.max_sge);

qp_init_attr.sq_sig_all = 1;

qp_init_attr.qp_context = NULL;

qp_init_attr.qp_type = IBV_QPT_RC;

qp = ibv_create_qp(pd, &qp_init_attr);

if (!qp)

 error();

- and a queue pair

More Specifically…

void *msgs;

struct ibv_mr *mr;

msgs = calloc(qp_init_attr.cap.max_recv_wr, MY_MSG_SIZE);

if (!msgs)

 error();

mr = ibv_reg_mr(pd, msgs, qp_init_attr.cap.max_recv_wr * MY_MSG_SIZE,

 IBV_ACCESS_LOCAL_WRITE);

if (!mr)

 error();

Allocate some messages

to receive data…

and register them

with the device

More Specifically…

struct ibv_recv_wr recv_wr, *bad_wr;

struct ibv_sge sge;

recv_wr.next = NULL;

recv_wr.sg_list = &sge;

recv_wr.num_sge = 1;

recv_wr.wr_id = 0;

sge.length = MY_MSG_SIZE;

sge.lkey = mr->lkey;

sge.addr = msgs;

for (i = 0; i < qp_init_attr.cap.max_recv_wr; i++) {

 ret = ibv_post_recv(qp, &recv_wr, &bad_wr);

 if (ret)

 error();

 sge.addr += MY_MSG_SIZE;

}

Post the messages

on the queue pair

before we connect

More Specifically…

I only have 30 minutes

and want to transfer

data

assume we connect

More Specifically…

void *msg;

struct ibv_mr *mr;

msg = calloc(1, MY_MSG_SIZE);

if (!msg)

 error();

mr = ibv_reg_mr(pd, msg, MY_MSG_SIZE,

 IBV_ACCESS_LOCAL_WRITE);

if (!mr)

 error();

Allocate a send buffer…

and register it

with the device

More Specifically…

struct ibv_send_wr send_wr, *bad_wr;

struct ibv_sge sge;

send_wr.next = NULL;

send_wr.sg_list = &sge;

send_wr.num_sge = 1;

send_wr.wr_id = 0;

sge.length = MY_MSG_SIZE;

sge.lkey = mr->lkey;

sge.addr = msgs;

<format_msg(msgs, 0);>

ret = ibv_post_send(qp, &send_wr, &bad_wr);

if (ret)

 error();

All this just to send?

More Specifically…

struct ibv_wc wc;

struct ibv_cq *cq;

void *context;

int ret;

do {

 ret = ibv_poll_cq(cq, 1, &wc);

 if (ret)

 break;

 ret = ibv_req_notify_cq(cq, 0);

 if (ret)

 error();

 ret = ibv_poll_cq(cq, 1, &wc);

 if (ret)

 break;

Wait for the send to complete

or we receive a response

Remember to poll the

completion queue after

requesting notification

More Specifically…

 ret = ibv_get_cq_event(comp_channel, &cq, &context);

 if (ret)

 error();

 ibv_ack_cq_events(cq, 1);

} while (1);

if (ret < 0)

 error();

Wait for an event and

check the completion

queue again

And it’s just that easy to send data!

Motivation continued

• And it’s just as bad on the receive side

Now, anyone want to DO an actual

RDMA operation?

Motivation continued

Actually, I just wanted to echo typing
between two systems connected by IB
that did not have ipoib (or sdp) but this

wouldn’t make as good an intro

Big Intro…

• RDMA sockets API

– Another API - ~joy~

• Calls that look and behave like sockets

• Connects like sockets

• Byte streaming transfers like sockets

– I.e. SOCK_STREAM

• Support for nonblocking operation like sockets

Ta-da!

Like sockets … except that it’s not

RSOCKETS!

Goals

• Socket programming concepts with minimal to

no need to learn anything about RDMA

– Let’s face it, no matter how many APIs we create

developers will still learn sockets

– Sockets will continue as the common fallback API

• Support existing socket applications under ideal

conditions

• SDP license free!

Support well-known network

programming concepts

Goals

• Outperform ipoib (and sdp)

– Or it’s pointless, except for limited environments

• Perform favorably compared to native RDMA

implementation

– Or there’s not a strong enough reason NOT to learn

RDMA programming

– Narrow the cost-benefit gap of maintaining verbs

support in an application long term

High performance

RSOCKETS Overview

• Proprietary protocol / algorithm

– I made it up

– Will be open sourced

• Entirely user-space

implementation

– Well, if we ignore the existing RDMA

support

– No need to merge anything

upstream!

RSOCKETS

Verbs
RDMA

CM

RDMA Device

Kernel

bypass

R + SOCKET Interface

• rsocket, rbind, rlisten, raccept, rconnect

• rshutdown, rclose
Connections

• rrecv, rrecvfrom, rrecvmsg, rread, rreadv

• rsend, rsendto, rsendmsg, rwrite, rwritev
Data transfers

• rpoll, rselect
Asynchronous

support

• rsetsockopt, rgetsockopt, rfcntl Socket options

• rgetpeername, rgetsockname
Other useful

calls

Supported Features

Functions take same parameters as sockets

• PF_INET, PF_INET6, SOCK_STREAM, IPPROTO_TCP

• MSG_DONTWAIT, MSG_PEEK

• SO_REUSEADDR, TCP_NODELAY, SO_ERROR

• SO_SNDBUF, SO_RCVBUF

• O_NONBLOCK

Implementation based on needs of

OSU and Intel MPI

Now a word from our sponsor…

 INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS

GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS

INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

 Performance tests and ratings are measured using specific computer systems and/or

components and reflect the approximate performance of Intel products as measured by

those tests. Any difference in system hardware or software design or configuration may

affect actual performance. Buyers should consult other sources of information to evaluate

the performance of systems or components they are considering purchasing. For more

information on performance tests and on the performance of Intel products, reference

www.intel.com/software/products.

 Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

 *Other names and brands may be claimed as the property of others.

 Copyright © 2012. Intel Corporation.

http://www.intel.com/software/products

More words from our sponsor…

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-

Intel microprocessors for optimizations that are not unique to Intel

microprocessors. These optimizations include SSE2, SSE3, and SSSE3

instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent

optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel

microarchitecture are reserved for Intel microprocessors. Please refer to

the applicable product User and Reference Guides for more information

regarding the specific instruction sets covered by this notice.

Notice revision #20110804

8-node Xeon X5570 @ 2.93
Ghz (Nehalem) cluster

8 cores / node

40 Gbps Infiniband

2 node latency and BW tests
rstream / perftest

64 process MPI runs

What’s the Performance?

Promising latency

and bandwidth

Can it work with

existing apps?

At all? Well?

0

1

2

3

4

5

6

7

8

9

10

IPoIB SDP RSOCKET IB

64-Byte Ping-Pong Latency (us)

0

5

10

15

20

25

30

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1m

Bandwidth (Gbps)

IPoIB

SDP

RSOCKET

IB

N/2: 500 vs 650 B

Note: implementation has minimal optimizations

Supporting Existing Apps

MPI or socket application

LD_PRELOAD RSOCKET
conversion library

RSOCKET

RDMA Verbs RDMA CM

Socket API

Real Socket API

Limited fallback

support

Export socket

calls and map

them to rsockets

IMB - Intel MPI Benchmarks

• Measure important MPI functionality

• Results for arbitrarily selected sizes

• IPoIB performance was much worse

– Omitted for space

• SDP tests failed for 64 ranks

– Had lower performance for fewer ranks

Results in microseconds -

lower is better

0

20

40

60

80

100

120

140

160

180

200

Allgather Allgatherv Alltoall Alltoallv

IMB 64 B (us)

0

5

10

15

20

25

30

35

40

45

50

IMB 64 B (us)
RSOCKETS

OFA

IMB Results

0

500

1000

1500

2000

2500

Allgather Allgatherv Alltoall Alltoallv

IMB 4 KB (us)

0

20

40

60

80

100

120

140

160

180

200

IMB 4 KB (us)

IMB Results

0

200

400

600

800

1000

1200

IMB 64 KB (us)
RSOCKETS

OFA

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Allgather Allgatherv Alltoall Alltoallv

IMB 64 KB (us)

-4000

1000

6000

11000

16000

21000

IMB 1 MB (us)

0

50000

100000

150000

200000

250000

300000

Allgather Allgatherv Alltoall Alltoallv

IBM 1 MB (us)

What About a “Real” App?

• HPC Challenge benchmarks

– Set of higher-level benchmarks

• As close to a “real” app that I could easily run

• Selected results reported

– SDP failed to run

– IPoIB results included

HPC Challenge

0

2

4

6

8

10

12

14

MaxPingPong RandomRing MinPingPong AvgPingPong NaturalRing

HPCC Latency (us)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

MinPingPong NaturalRing RandomRing MaxPingPong AvgPingPong

HPCC Bandwidth (GB/s)
TCP

RSOCKETS

OFA

Higher is better Lower is better

HPC Challenge

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TCP RSOCKETS OFA

HPL (Tflops)

0

2

4

6

8

10

12

TCP RSOCKETS OFA

PTRANS (GB/s)

0

0.01

0.02

0.03

0.04

0.05

0.06

TCP RSOCKETS OFA

MPI Random Access LCG (GUPs)

0

5

10

15

20

25

30

TCP RSOCKETS OFA

MPI FFT (Gflops)

Look over there

Higher is better

Closing the Performance Gap

• Notable area for improvement:

– Direct data placement (reduce memory copies)

• Possible, but…

• Most target applications use nonblocking

sockets

– Restricts use with recv()

– Which reduces usefulness with send()

• Alternatives?

Closing the Performance Gap

• Is there any way to add direct access to RDMA
operations through sockets?
– Get that last bit of performance

• While keeping it simple?

• And.. without actually needing to know anything
about RDMA?
– Or these acronyms: PD, CQ, HCA, MR, QP, LID, GID, …

• And make it generic, so that other technologies may
be able to use it
– Tag matching, file I/O, SSDs

• And continue to support the socket programming
model!

Direct Data Placement Extensions

• Can we find calls that blend in with existing calls?

• Now we may be talking about new programming

concepts

• Are there any existing calls that are usable?

– send, sendto, sendmsg, write, writev, pwrite …

– recv, recvfrom, recvmsg, read, readv, pread …

– mmap, lseek, fseek, fgetpos, fsetpos, fsync …

This is a discussion point only

Although not used with sockets, these

calls may be used as guides

Direct Data Placement APIs

• Map memory to a specified offset

• Specify access restrictions

• Maps to memory registration
rmmap

• Read from an offset into a local buffer

• Maps to RDMA read operation
rget

• Write from a local buffer to the given offset

• Maps to RDMA write operation
rput

Direct Data Placement

• Extends current usage model

– No change to connecting or send/recv calls

– Memory region data exchanged underneath

• Appears usable for multiple technologies

• Seems easy to learn and use

Sounds great, you should get to

work on this right away!

The Real Problem

Target
applications use

nonblocking
sockets

Direct data
placement calls
may not block

Notification of
completion

should come
from select() and

poll() calls

Would need to determine how to handle

nonblocking calls without an indecent

exposure to RDMA

Requests to Verbs

• Asynchronous memory registration

– Assist with direct data placement

• A single file descriptor for all RDMA resources

– Event queue, completion queue, connections

– Simplifies implementation

• Way to transfer control of a set of RDMA

resources to another process

– Help support apps that fork

What’s Your Opinion?

Does rsockets have a
place going forward?

• It’s really 5 years
too late

• In limited
environments

• Absolutely

What’s the best way
to add direct data

placement?

• Not at all

• Best solution using
existing socket calls

• Extensions

What other features
are worth

implementing?

• Datagram support?

• Out of band data?

• Fork?

www.openfabrics.org 40

