
Exadata in Enterprise Data

Centers

www.oracle.com 1

Author: Sumanta Chatterjee
Richard Frank

Date: April 5, 2011

4/5/2011

Safe Harbor Statement

The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be

incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied upon

in making purchasing decisions.

The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole

discretion of Oracle.

Outline

• Evolution of Exadata since last report

• Current models

• New opportunities

4/5/2011www.oracle.com 3

Copyright © 2010 Oracle

Corporation and/or its affiliates –

4 –

Exadata Database Machine X2-8 Full Rack
Extreme Performance for Consolidation, Large OLTP and DW

• 2 x64 Eight-processor Database servers (Sun Fire 4800)

– High Core, High Memory Database Servers

– 128 CPU cores (64 per server)

– 2 TB (1 TB per server)

– 10 GigE connectivity to Data Center

• 16 x 10GbE ports (8 per server)

• 14 Exadata Storage Servers X2-2

– All with High Performance 600GB SAS disks

OR

– All with High Capacity 2 TB SAS disks

• 3 Sun Datacenter InfiniBand Switch 36

– 36-port Managed QDR (40Gb/s) switch

• 1 “Admin” Cisco Ethernet switch

• Redundant Power Distributions Units (PDUs)

Add more racks for additional scalability

Copyright © 2010 Oracle

Corporation and/or its affiliates –

5 –

Exadata Database Machine X2-2 Full Rack
Pre-Configured for Extreme Performance

• 8 x64 Dual-procesor Database Servers (Sun Fire X4170

M2)

– 96 cores (12 per server)

– 768 GB memory (96GB per server)

– 10 GigE connectivity to Data Center

• 16 x 10GbE ports (2 per server)

• 14 Exadata Storage Servers X2-2

– All with High Performance 600GB SAS disks

OR

– All with High Capacity 2 TB SAS disks

• 3 Sun Datacenter InfiniBand Switch 36

– 36-port Managed QDR (40Gb/s) switch

• 1 “Admin” Cisco Ethernet switch

• Keyboard, Video, Mouse (KVM) hardware

• Redundant Power Distributions Units (PDUs)

Add more racks for additional scalability

Copyright © 2010 Oracle

Corporation and/or its affiliates –

6 –

Scaling Out to Multiple Full

Racks

• Single InfiniBand Network

• Switch to a “Fat Tree” Topology

–Valid up to 8 Racks

• Many multi-racks sites

Copyright © 2010 Oracle

Corporation and/or its affiliates –

7 –

Multiple Rack Case – Up to 8 Racks

Rack N

• Distribute 8 links from every “leaf” switch to every “spine” switch

• 2 rack case – 4 links from every leaf to spine switch

• 3 rack case - 3,3,2 links from each leaf to the 3 spine switches

• 4 rack case – 2 links from each leaf to spine switch

• 5,6,7,8 rack case – 1 or 2 links from each leaf to spine (8 links from each

leaf)

• Greater than 8 rack requires larger external switches

Rack 1

…

…

L1
L2

S

Rack 2

L1
L2

S

L1
L2

S

Current Operational Model

• RDS kernel mode driver

– used for RAC messages

– Exadata I/0

• Socket interface with extensions for async I/O

– Atomics

– RDMA read / write

– FMRs - we register / deregister every I/O to fence

memory.

– 1.7 million 8k IOPS over 4 HCAs..

4/5/2011www.oracle.com 8

Current Status cont…

• Certified RDS / TCP for RAC

• ROCEE being validated for RAC

• Ongoing work in RDS driver..

– NUMA performance

– Interrupt balancing

– Ordering hinting.. enables multiple paths..

– SRQ..

– Resource re-use / preallocation.. For deterministic

behavior under load..

4/5/2011www.oracle.com 9

NFS - RDMA

• User mode NFS client - based on TCP

– many connections to filer.

– Implemented NFS / RDMA from user mode via user

mode verbs.

– Only uses rdma for data xfers.. Still uses TCP for

control plane.. Meta data ops..

– We extended verbs to support FMRs = relaxed = lazy

invalidate.

– New ibv_sync_mr().. To force invalidation of

unregistered fmrs…

4/5/2011www.oracle.com 10

New Oracle IPC

• RDS is great for Exadata…

– relatively long operation times (I/Os).. 100 usecs..

From flash..

– Event based model.. Client yields while waiting..

• New IPC.. (75% reduction) With udp, rds, rc, xrc

transports.. 50% shorter code paths..

• Much simpler interface (dropped the MIT effect).

• rc + xrc are based on libibverbs.

4/5/2011www.oracle.com 11

RAC requires much lower

latencies

• Moving to MPI like interfaces for some

operations.

– User mode busy wait for completion

– Stalls hardware thread execution… and polls for CQ

completions..

• Introducing Remote Memory Access Model

– Clients operate on a declared data structure.. As if

structure is always local..

– Transparent where location of structure is

– Uses rdma read, write, + atomics..

Oracle RMA model

struct my_obj { int var1; char data[256]; };

peer1() {

struct my_obj obj; struct *rma_obj;

init_rma_obj(&my_obj, rma_obj);

while (1) {

rma_update_barrier_begin(rma_obj);

my_obj.var1++;

my_obj.data = "this is a peer1";

rma_update_barrier_end(rma_obj);

}

}

Oracle RMA model

• Barrier / data sync operations
– Dirty read, Dirty write

– Consistent Read - remote host can be updating local
memory while remote reader is reading it..

– Consistent Update – local host can be reading data
while remote host is updating it..

– Serialized Read / Write – lock, read, write, unlock

• Atomics
– Fetch add, Compare swap, variable sized data..

– Transactional.. If updater dies in middle of update..
Update is rolled back..

Oracle RMA model

• Dirty Read – 2 usecs.. 256 bytes..

• Consistent Read – 3 usecs for 256 bytes..
– Uses CRC for small data structures.

– Uses sequence of 3 RDMA fenced reads for larger
structs..

• PGAS model for “fixed” RMA object space.

– All nodes contribute chunk of shmem address space.

– Same size on all nodes.

– All nodes can access shmem on all other nodes

– All objects are at same offset in PGAS.. For each
node

Oracle MSGQ

• Based on RDMA writes to remote rings

• Allocate ring in private or shared memory

• Client has access to remote ring and inserts

variable sized msgs with rdma writes..

• 4 usecs update latency for 1kb msgs..

• If q is empty reader writes that it is waiting to

writer via rdma write same if q is full..

• Wake involves sending small msg.. To get

remote side scheduled again..

Future work..

• RMA helps with some problems..

– Where simple structure manipulation meets run time

requirements and operation time permits busy wait.

• However, if complex processing is required..

– Lock and search hash list..if entry not found then

insert new entry.. Etc..

– requires multiple RMA operations.. Resulting in client

yielding.. Can not busywait() for 20 usecs..

Offload Procedures

• Procedure structure

1. Lock local host memory struct..

2. Read in chunk of local host memory to HCA.

3. Process chunk in local HCA scratch pad memory.

4. Write chunk back to local host memory.

5. Unlock local host memory struct.

6. Return procedure result to initiator.

• Procedures complete in < 5 usecs.. Allowing

client to busy wait..

Offload Procedures

• Embedded processors with O/S and support library..

• Host side daemons for debug / tracing / mgmt tasks etc..

• Procedure compiler + Load procedures into HCA..

• New QP type.. “offload” – supports all IB operations..
Procedures().. With IB ordering semantics.

• Procedures look like data packet to IB.. Except that they
are picked off by remote HCA and handed to local
handler running in HCA..

• Handler sends response which looks like incoming msg
to verbs app..

• Error conditions can cause procedure to be forwarded to
verbs app at target..

