InfiniBand Performance Metrics/Testing

Susan Coulter Los Alamos National Laboratory

High Performance Computing Division HPC-3 Production Systems skc@lanl.gov

April 19, 2013

UNCLASSIFIED

LA-UR-13-22698

Testing Fundamental Fabric Performance

- ib_read_bw, ib_write_bw
 - Speed * encoding = theoretical maximum data bandwidth
 - QDR → 40Gb/s * 80% = 32Gb/s
 - ◆ FDR → 56Gb/s * 97% = 54.5Gb/s
- ib_read_lat, ib_write_lat
- mpi synthetics
- Previously: manual process run as time permits on cluster standup
- Now: automated process run regularly
- 3 problems uncovered at LANL with these processes

UNCLASSIFIED

First automation: Lustre LNet to OSS Aggregate Testing

... from the wiki

Client script for cielo LNet aggregate

The iterations are increased to 100,000 to insure significant overlap of clients.

for x in `seq 1 52`; do ib_read_bw -p 18515 -n 100000 10.149.13.\${x} & done | grep 65536 >> /tmp/agg

Check MDSes

To verify IB connection on MDSes:

pdsh -R ssh -w ci-mds1,ci-mds2,ci-mds3,ci-mds4 ibstat

Find the LNet nodes

To get the list of current LNet systems, on boot node: xtopview -e "cat /etc/sysconfig/ethcfg" | grep lnet > /tmp/lnet_nids cat /tmp/lnet_nids | xargs | sed 's/ /,/g' > /tmp/lnet_arg (may need to whack extra stuff from /tmp/lnet_nids)

UNCLASSIFIED

Lustre – LNet to OSS Aggregate Testing (continued)

Server

for x in `seq 18515 18562`; do pexec -t0 -P52 -pm `cat /tmp/lnet_arg` --ping --ssh /usr/bin/perftest-1.2.3/ib_read_bw -p \${x}; done

Client

copy to all OSSs
for x in `seq 1 48`; do scp client ci-oss\${x}:/tmp/foo; done

modify port used on each client
for x in `seq 1 48`; do port=18514; port=`expr \$port + \${x}`; ssh ci-oss\${x} "cat /tmp/foo | sed 's/18515/\$port/' > /tmp/client";
done

make it executable
for x in `seq 1 48`; do ssh ci-oss\${x} chmod +x /tmp/client; done

launch
for x in `seq 1 48`; do ssh ci-oss\${x} /tmp/client; done

Grab the data

```
for x in `seq 1 48`; do echo ci-oss${x} to LNets >> /root/markus/agg; scp ci-oss${x}:/tmp/agg /root/markus/skc; cat /root/markus/skc
>> /root/markus/agg.fta; done
```

Clear data

for x in `seq 1 48`; do ssh ci-oss\${x} rm /tmp/agg; done

UNCLASSIFIED

Typhoon vs Luna Case study

Typhoon (older)

- Appro cluster in classified partition
- 416 compute nodes / 32 AMD 2GHz processors each
- 2 Voltaire QDR 4700 Grid Director chassis
- FatTree routing

Luna (newer)

- Appro cluster in classified partition
- 1636 compute nodes / 16 Intel XEON 2.6GHz processors each
- 3 QLogic/Intel QDR chassis and 90 36port edge switches
- FatTree routing
- User codes reporting 5x speed up !!!

UNCLASSIFIED

Typhoon verbs performance – what ?!?

Operated by Los Alamos National Security, LLC for NNSA

-OS

Not the fabric ... check the nodes (dmidecode)

tya001: System Informatio	on			tya414: System Information		
tya001: Manufacture	er: APPRO			tya414:	Manufacturer: Supermicro	
tya001: Product Nam	ne: 1343H-LANL-CN			tya414:	Product Name: H	3QG6
tya001: Family: 1234	4567890			h	Family: 40045070	00
tya413: System	n Information			tya414:	Family: 12345678	90
tya413: M	lanufacturer: APPRO		B	Base Board	Information	
tya413: Pr	roduct Name: APPRO-1343H			Manufacturer: Supermicro Product Name: H8QG6		
tya413: Fa	amily: 1234567890					
tya182: System Information tya182: Manufacturer: APF						
		20		tya002: System Information		
tya	a182: Product Name: 1343	Name: 1343H-LANL-CI		tya002:	Manufacturer: Supe	rmicro
tya	tya182: Family: Server			tya002:	Product Name: H8QG6	
• Los Alamos NATIONAL LABORATORY EST. 1943	UNCL	ASSIFIED		tya002:	Family: Server	

Motherboard or BIOS ?

BIOS Date: 07/01/2008 Ver: 6.24.00.00 BIOS Date: 04/11/2012 Ver: 2.0b BIOS Date: 09/02/10 Rev: 1.0b BIOS Date: 09/08/10 11:37:43 Ver: 1.0b BIOS Date: 10/11/10 16:32:43 Ver 1.0c BIOS Date: 10/28/2011 Ver: 2.0a

BIOS Date: 11/04/10 10:59:38 Ver 1.10.t06

7 different bios versions !!

Only 1, resident on 6 nodes, resulted in full IB performance

UNCLASSIFIED

BIOS settings

After BIOS change

Operated by Los Alamos National Security, LLC for NNSA

_OS

EST.1943

File System Write Performance

Automate for baseline trending - Gazebo / Splunk

- gazebo: LANL-written test framework
 - allows setup of ongoing process to continually submit jobs
 - can control how much of the machine your tests cover
 - sends results directly to splunk
- splunk: Tool for handling/indexing/querying large amounts of data
 - allows for trending and graphing data
 - can create baselines and thresholds
 - can send notices given certain events or combination of events

UNCLASSIFIED

Splunk easily shows ... Mustang is slower than Conejo?!

Mustang vs Mapejo Case study

Conejo/Mapache (older)

- SGI cluster in open partition
- 620 compute nodes / 8 Intel XEON 2.6GHz processors each
- 1 QDR Grid Director chassis
- FatTree routing

Mustang (newer)

- Appro cluster in open partition
- 1600 compute nodes / 24 AMD 2.3GHz processors each
- 3 QDR Grid Director chassis and 91 36 port edge switches
- FatTree routing
- Why is it so much slower ?

UNCLASSIFIED

Mustang and Mapejo – IB configuration

QDR Mellanox – FatTree routing

Mustang and Mapejo – Processors

Mustang:	Conejo/Mapache:			
vendor_id: AuthenticAMD	vendor_id: GenuineIntel			
cpu family: 16	cpu family: 6			
model name: AMD Opteron(tm) Processor 6176	model name: Intel®Xeon® CPUX5550@2.67GHz			
stepping: 1	stepping: 5			
cpu MHz: 2300.082	Cpu MHz: 2668.000			
cache size: 512 KB	cache size: 8192 KB			
siblings: 12	siblings: 4			
cpu cores: 12	cpu cores: 4			
bogomips: 4600.04	bogomips: 5333.51			
TLB size: 1024 4K pages				
clflush size: 64	clflush size: 64			
cache_alignment: 64	cache_alignment: 64			
address sizes: 48 bits physical, 48 bits virtual	address sizes: 40 bits physical, 48 bits virtual			
power management: ts ttp tm stc 100mhzsteps hwpstate	power management: [8]			

UNCLASSIFIED

Mustang and Mapejo – PCI settings

Conejo/Mapache:

01:00.0 InfiniBand: Mellanox Technologies MT26428 [ConnectX VPI PCIe 2.0 5GT/s - IB QDR / 10GigE] (rev b0)

Subsystem: Mellanox Technologies Device 0022

Control: I/O- Mem+ BusMaster+ SpecCycle-MemWINV- VGASnoop- ParErr+ Stepping- SERR+ FastB2B- DisINTx+

Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx-

Latency: 0, Cache Line Size: 256

Mustang:

02:00.0 InfiniBand: Mellanox Technologies MT26428 [ConnectX VPI PCIe 2.0 5GT/s - IB QDR / 10GigE] (rev b0)

Subsystem: Super Micro Computer Inc Device 673c

Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx+

Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx-

Latency: 0, Cache Line Size: 64 bytes

UNCLASSIFIED

Conclusion

- Performance metrics do more than validate the fabric !!
- Great for baseline and trending
- Useful for validating (or not) user reports of changes

UNCLASSIFIED

End

Questions?

UNCLASSIFIED

