
Group Requirement Done
(0–1)

Acked Notes / How Met

MPI

1 Message boundaries 1 MSG and tagged interfaces

2 Minimize instructions in critical path 1 Optimized APIs with control information for operations
configured during initialization.

3 Zero copy 1 Data transfer interfaces are asynchronous and can support zero-
copy, subject to provider hardware capabilities.

4 One-sided transfers 1 RMA interfaces

5 One-sided atomics 1 Atomic interfaces

6 Two-sided semantics 1 MSG and tagged interfaces

7 Arbitrary buffer alignment for data
transfers

1 No requirement specified

8 Asynchronous progress independent of
API calls

 See progress discussion to determine if MPI needs are met.
https://www.openfabrics.org/downloads/OFIWG/2014-05-06-
ofiwg-progress.pptx
 https://www.openfabrics.org/downloads/OFIWG/2014-05-13-
ofiwg-progress2.pptx

9 Scale to millions of communication
peers

1 Introduces reliable-unconnected (reliable-datagram) model.
Adds address vector class to improve address resolution
performance and minimize local address data memory
requirements. Allows AVs to be shared among multiple
processes on a single node, and will tie into the scalable SA
framework. Interface concepts are there, but underlying
implementation is developing.

10 Reliable and unreliable communication 1 Multiple endpoint types are defined

11 Connectionless communication 1 Multiple endpoint types are defined

12 Specify remote RMA address 1 RMA interfaces

13 RMA write with immediate 0.5 RMA writemsg interface and fi_eq_data_entry for completions.
Support is available, but not an optimized call.

14 Larger RMA write immediate data 0.5 RMA writemsg and fi_eq_data_entry support 8-byte immediate
data. Iovec could be used to transfer more than 8-bytes of

https://www.openfabrics.org/downloads/OFIWG/2014-05-06-ofiwg-progress.pptx
https://www.openfabrics.org/downloads/OFIWG/2014-05-06-ofiwg-progress.pptx
https://www.openfabrics.org/downloads/OFIWG/2014-05-13-ofiwg-progress2.pptx
https://www.openfabrics.org/downloads/OFIWG/2014-05-13-ofiwg-progress2.pptx

immediate data. Completion support would require compatible
changes to fi_eq_data_entry.

15 Reuse short buffers immediately 1 FI_INJECT flag and ‘inject’ data transfers allow for buffer reuse.
Provider indicates both the maximum size of single transfer and
the maximum total amount of buffer space available. No
restriction is placed on the provider implementation, but inline is
supported.

16 Native OS polling and blocking support 1 Wait objects are selectable by application and may be retrieved
for use in native calls (e.g. select/poll/pthread). For performance
reasons, fabric interfaces are also defined for polling / waiting on
objects.

17 Discover device, ports and their
capabilities, but not tied to specific
hardware models.

 Proposal abstracts device and ports from application. Provider
and ‘domain’ concepts expose application capabilities and usage
requirements (for maximum performance). Discovery is built
around fi_getinfo call, but operates at a higher level of
abstraction than a device level.

18 SGL support 1 All operations support SGL

19 Atomic support 1 Atomic interfaces provide full set of operations and data
transfer sizes.

20 Multiple consumers in a single process.
Independent handles.

1

21 Avoid collective initialization across
multiple processes

1

22 Independent process images between
peers

1

23 Separate completion order from
delivery order

 No intent to make this association, but see ordering discussion
(TBD) to determine if MPI needs are met.

24 Support any process address region –
stack, heap

1 Memory registration constraints and zero copy support limit use
of stack space for data transfers – see FI_INJECT.

25 Do not require a specific wire protocol 1 Support for multiple wire protocols will be supported, including
support for provider specific protocols (e.g. Intel PSM) and
external protocols layered over lower-level protocols (e.g.
rsockets over IB/iWarp RC QPs). Underlying protocol exposed

through fi_info structure. Applications must adhere to any low-
level protocol requirements, such as 40-byte GRH UD header,
but such requirements are enforced only when that protocol is
used.

26 Ability to establish connections 1 CM interfaces

27 Must grant permission for peer access
to memory

1 Registration is required for remote access to local memory.

28 Clean up resources on process
termination

1 Kernel requirement to reclaim any allocated resources.

29 Expose MTU for unconnected data
transfers

1 Endpoints have a FI_OPT_MAX_MESSAGE_SIZE (size_t) property.

30 Control over CM timeouts 1 Use administrative file interfaces to specify CM timeout / retry
values (~ /proc/sys/net/ipv4). Provide endpoint control options
for an application to override defaults.

31 Support non-blocking address handle
creation

1 Address vector interfaces are asynchronous.

32 Support non-blocking CM calls 1 CM interfaces are asynchronous.

33 Support non-blocking memory
registration

1 Memory registration interfaces are asynchronous.

34 Specify buffer / length as function
parameters – use fewer structures to
minimize memory accesses

1 Optimized data transfer APIs take buffer and length as
parameters.

35 Query number of send credits available 0.5 Data transfer APIs return EAGAIN if queues are full.

36 Eliminate ‘queue pair’ concept, and
replace with send and receive channels

0.5 Queue pair is replaced with more generic ‘endpoint’ class.
Endpoints may be send-only, receive-only, or both. An endpoint
may support multiple data transfer flows. To support
connection-oriented endpoints, send and receive channels may
need to be tightly coupled.

37 Completion at target for RMA write 0.3 RMA and event queue interfaces support this notion. Need
mechanism for provider to indicate if this is supported and to
document the expected behavior. Are events at the target side
associated with an endpoint or a memory region bound to an
event queue?

38 Ability to determine if loopback
communication is supported

 Assumption is that loopback communication must be supported
by providers.

39 Document what functionality must be
provided, versus which is optional

0.9 Mechanism is available, but specific functionality needs to be
determined. Intent is to allow providers to optionally support
specific functionality. Some support may require provider
specific protocols.

40 Improve ability to determine cause of
errors

1 Provider specific error codes and strerror functionality are
exposed.

41 Standardized high-level tag matching
interface

1 Tagged interfaces

42 Standardized high-level non-blocking
collective operations

0.3 Triggered operation support defined as a collective building
block.

43 Standardized atomic operations 1 Atomic interfaces

44 Providers must support full set of
interfaces, even if emulated

0.5 Providers are free to support all interfaces. Proprietary
protocols are supported. The framework can provide emulated
interfaces over device specific interfaces (e.g. libibverbs) that
providers can re-use. No plans to require providers to support
any specific interfaces, or to what extent they must be
supported.

45 Run-time query to determine which
interfaces are supported

1 The fi_info protocol_cap field indicates which interfaces are
supported by a provider. Additional query functionality is
provided for atomic support.

46 Direct access to vendor-specific
features

1 Applications can open provider specific interfaces by name. All
framework classes support provider specific interface extensions.

47 Run-time version query support 1 Version data available through query interfaces.

48 Compile-time convention for safe, non-
portable code

1 FI_DIRECT allows building against a specific provider, with
documented compile-time flags that a provider must set to allow
highly-optimized application builds. Providers may override
static inline wrapper calls and select enum values to support
function inlining.

49 Direct access to vendor 1 Framework only intercepts a small number of calls. All critical
calls go directly to the provider.

50 Run-time query to determine if 1 FI_LOCAL_MR domain capability flag. Long term goal to move

memory registration is necessary registration caches into framework.

51 Notification of forced memory
deregistration (e.g. munmap)

52 Fork support – parent process may
continue to use all opened handles and
fabric resources

 Any effect on API?

53 For support – opened fabric resources
are not shared with child processes.
Child must re-initialize and open any
desired resources

 Any effect on API?

54 Do not require use of GRH (network
specific header) with data transfers.

1 MSG interfaces allow posting of GRH headers for applications
that need them, but posting is not required, and the GRH format
is not specified as part of the API. The exposed low-level
endpoint protocol indicates if a GRH is required or not.

55 Request ordered versus unordered
delivery, by traffic type (send/receive
versus RMA)

0.5 See ordering discussion (TBD) to see if MPI needs are met.

56 Allow listeners to request a specific
network address

1 Endpoint creation and CM interfaces.

57 Allow receivers to consume buffers
directly related to size of incoming
message (e.g. slab buffering)

0.5 FI_MULTI_RECV flag adds support for slab receive buffering.
Need mechanism to indicate support.

58 Aggregate completions 1 Event counters interfaces.

59 Out-of-band messaging Need clarification. Endpoints have the concept of multiple flows,
which might be useful here.

60 Non-contiguous data transfer support 0.5 Struct iovec is supported. Other formats would require
extensions to the API or special interpretation of iovec data.

61 No page size restriction 1

62 Access to underlying performance
counters

0.5 Event counter interfaces. Need to verify if APIs are usable for
generic purposes, such as reading performance counters, and
document their usage in such cases.

63 Get/set network QoS levels 1 Endpoints getopt/setopt interfaces.

64 Atomic support for all C types 1 Atomic interfaces – checked against MPI defined types. Provider

support is optional, but queryable.

65 Full set of atomic operation support 1 Atomic interfaces – checked against MPI operations. Provider
support is optional, but queryable.

66 Query to determine if atomic
operations are coherent with host

1 FI_WRITE_COHERENT flag.

67 Offset based communication – RMA
target address as offset

68 Allow application to discover if VA or
offset based RMA performs better

69 Aggregate completions per endpoint
and per memory region

0.5 Event counters interfaces. Need to define/document use case
for per memory region, versus per endpoint.

70 Specify remote access keys (rkeys)
when registering

1 MR interfaces, FI_USER_MR_KEY capability flag.

71 Specify arbitrary sized atomic ops 0 Atomic interfaces limited to full set of C types. Need
clarification.

72 Specify/query ordering of atomics See ordering discussion (TBD) to see if it meets MPI needs.

73 Provide network topology data Fabric class defined where topology data would go. Topology
interfaces and data structures are not defined.

74 Without tag matching, need to
send/receive two buffers

 Tagged interfaces are defined.

75 Optional support for thread safety 1 Compile and run-time threading options, similar to MPI.
fi_threading enum.

76 Support for checkpoint/restart. Allow
closing stale handles that may not have
a matching kernel resource.

 Any effect on API?

77 No assumption of maximum transfer
size

 Maximum message sizes supported by provider exposed through
attributes.

78 No assumption that memory
translation is in network hardware

 Any effect on API?

79 No assumption communication buffers
are in RAM

 Any effect on API? Do we need a flag to indicate that an address
range is I/O mapped?

80 Support both onload and offload
hardware models

1 See discussion on progress (links above) to see if MPI needs are
met.

81 No assumption that API handles refer
to unique hardware resources

1 Handles are abstractions, with no requirement to map to specific
hardware resources.

82 Have well-defined failure semantics
communicating with peers

 Need to define error reporting for unexpected disconnect and
unreachable unconnected peers.

Rsockets
ES-API

83 Single wait object and event queue for
CM and CQ events

84 In-band disconnect notification

85 Associate transport resource with an fd
for fstat, dup2, etc. support

86 Fork support, even if resources must
migrate from user space to kernel

87 Chroot support No file paths exposed in API. Administrative configuration makes
use of file system.

88 Eliminate RMA address exchange –
offset based transfers

- See 67.

89 Eliminate RMA rkey exchange – user
selectable key

- See 70.

90 Target RMA write event – buffer and
length

- See 37.

91 Eliminate posting receives when only
using immediate data

 Need to document. May need to define local/remote EQ
overflow notification.

92 Target side support for slab based
receive buffer(s).

- See 57.

93 Indicate completed send operations
using count. Support different sends
updating different count values.

 Related to 58. Need to define usage of multiple counters.

94 Target side support to separate
received data into multiple buffers (i.e.
header and data), both using slab
based buffering.

 Related to 57. No mechanism defined for splitting received data
between buffers.

95 Completion notification of partially EQ interfaces can support this. No mechanism defined for how a

received large data transfers. user would configure the notification threshold.

96 Signal fd when transport is able to
accept new data.

97 Keep-alive support - optimized 0-byte
transfers that are acked at target, but
do not consume target resources

0.5 0-byte RMA write support possible, but may introduce extra
RMA protocol header.

98 Scalable transport address resolution
and storage – user-selectable
unconnected transport addresses

99 Multicast support 1 CM multicast interfaces

100 Increase immediate data size – provide
mechanism to determine supported
size.

 Related to 14.

101 Timeout values for all CM ops - See 30.

102 Timeout value for reading events

103 Ability to cancel outstanding operations 1 Endpoint cancel interface

104 Document what error codes all calls
may return

0.2

105 Use a single error return convention 1 Calls return –(fabric errno) on error.

106 Consistent error values in events 1 Error events return fabric errno, along with provider specific
error code.

107 Easy mechanism to display error text 1 Related to 40. Strerrro functions defined for converting error
values into text, including provider specific error codes.

108 Query status of local queues Related to 35.

109 Support memory registration at the
system level

0 Memory registration interfaces defined at a domain level.
Interfaces would be usable at a wider level, but with constraints,
such as requiring user selectable protection key.

110 Detect any memory alignment
restrictions, if any.

- See 7.

111 Discovery of inline data sizes - See 15.

112 Define required minimum SGL size

113 Define required minimum inline size

114 Define required minimum immediate

data size

115 Define required minimum private data
size

116 Support multiple providers 1

117 Provide full test suite – simple
examples, performance tests,
compliance tests (errors and min/max
values)

0.1 Fabtests to evolve into full test suite.

SHMEM
PGAS

118 Scalable endpoint memory usage 1 Reliable unconnected endpoint and AV interfaces

119 Low-overhead mechanism to
enumerate endpoints (i.e. ranks)

1 AV table interfaces

120 Connectionless RMA and message
interfaces

1 Data transfer interfaces include connectionless operations

121 Support dynamic connection
establishment

1 CM interfaces

122 Support all to all connection efficiently 0.5 CM and AV interfaces

123 Support for ‘thread hot’ thread safety
model

1 fi_threading models

124 Scalable memory registration – user
selectable rkey

- See 70.

125 Scalable memory registration – offset
based addressing

- See 67.

126 Separate registration from page
pinning, to support sparsely populated
memory regions

127 Allow memory regions to grow
up/down

128 Signaled RMA put that writes flag value
to specified memory location after all
RMA put data is available at target

0.5 RMA write with immediate as possible option

129 RMA operation increments counter at 1 Remote updates to registered memory regions may increment a

receiver on completion, for scalable
global communication patterns

counter

130 RMA put completion when local buffer
is re-usable

1 EQ interfaces

131 RMA put completion when remote
buffer has been updated

1 FI_REMOTE_COMPLETE flag

132 Blocking RMA put until local buffer is
safe to reuse

1 FI_BUFFERED_SEND flag and inject calls

133 RMA put data ordering requirements:
WAW, WAR, RAW

0.5 See ordering discussion (TBD) to see if PGAS needs are met.

134 Rich set of atomic operations 1 See 65.

135 Multi-element atomic operations 1 Atomic interfaces

136 Support 16, 32, 64, and 128-bit atomics 0.75 Related to 64. 128-bit not defined

137 Support high-performance ‘estimated’
atomic operations

138 Lightweight aggregate completion
mechanism for RMA get/put

1 See 58.

139 Notification of get completion at target
that indicates read buffer may be
reused

140 Fencing operation between RMA
transactions

 Fi_sync call

141 Per transfer networking ordering
options

0.5 See ordering discussion (TBD) to see if PGAS needs are met.

142 Larger RMA write immediate data See 14.

143 Low-level common collective interfaces
– barrier, reductions, alltoall, allgather

144 Active message support

OFIWG

145 Support sharing receive buffers across
multiple connections / endpoints

0.5 Receive endpoint class

146 Multicast loopback suppression;
preferred per endpoint option. (See

IP_MULTICAST_LOOP option.)

147 Send-only multicast support

148 Control multicast routing and
backpressure options. Detect multicast
congestion.

149 Support receiving all multicast traffic.
See IP_MULTICAST_ALL option.

150 Support promiscuous endpoints.

151 Support flow steering capabilities

152 Allow the completion of one request to
indicate that some set of previous
requests have completed.

Oracle

153 Signaled and silent completions

154 Message based communication

155 Simplex communication channels

156 Ordered, reliable, non-duplicated
messages.

157 Timestamp part of endpoint address

158 Optimized address change notification.
Not per connection.

159 Scaling to very large process counts
(10,000s) per node.

160 Support difference QoS levels for
different data transfer flows.

161 Provide virtual isolation between
databases.

162 Optimize resource sharing –
registration, etc. – across processes
using symmetric memory.

163 Want single use RMA buffers or
mechanism to cancel a pending receive
buffer.

164 Describe system NUMA architecture
and mapping to fabric resources:
devices, interrupts.

165 OS supported wait mechanisms.
Cannot poll to drive state.

166 Support for triggered operations –
across processes and/or endpoints.

167 RMA write completion notification at
target.

168 Completion of RMA writes to persistent
memory target.

