
A Brief Introduction to the OpenFabrics Interfaces
A New Network API for Maximizing High Performance Application Efficiency

Paul Grun
Cray, Inc.

Advanced Technology
Seattle, WA, USA

grun@cray.com

David Goodell
Cisco Systems, Inc.
dgoodell@cisco.com

Sean Hefty
Software Solutions Group

Intel Corp.
Hillsboro, OR, USA
sean.hefty@intel.com

Robert Russell
InterOperability Laboratory

University of New Hampshire
Durham, NH, USA

rdr@iol.unh.edu

Jeffrey Squyres
Cisco Systems, Inc.
jsquyres@cisco.com

Sayantan Sur
Intel Corp.

sayantan.sur@intel.com

Howard Pritchard
Los Alamos National Lab

howardp@lanl.gov

Abstract—OpenFabrics Interfaces (OFI) is a new family of
application program interfaces that exposes communication
services to middleware and applications. Libfabric is the
first member of this family of interfaces and was designed
under the auspices of the OpenFabrics Alliance by a broad
coalition of industry, academic, and national labs partners
over the past two years. Building and expanding on the goals
and objectives of the verbs interface, libfabric is specifically
designed to meet the performance and scalability requirements
of high performance applications such as Message Passing
Interface (MPI) libraries, Symmetric Hierarchical Memory
Access (SHMEM) libraries, Partitioned Global Address Space
(PGAS) programming models, Database Management Systems
(DBMS), and enterprise applications running in a tightly
coupled network environment. A key aspect of libfabric is that
it is designed to be independent of the underlying network
protocols as well as the implementation of the networking
devices. This paper provides a brief discussion of the motivation
for creating a new API and describes the novel requirements
gathering process that was used to drive its design. Next, we
provide a high level overview of the API architecture and
design, and finally we discuss the current state of development,
release schedule and future work.

Keywords-— fabric; interconnect; networking; interface

I. INTRODUCTION

OpenFabrics Interfaces, or OFI, is a framework focused
on exporting communication services to applications. OFI
is specifically designed to meet the performance and scala-
bility requirements of high-performance computing (HPC),
applications, such as MPI, SHMEM, PGAS, DBMS, and
enterprise applications, running in a tightly coupled network
environment. The key components of OFI are: application

interfaces, provider libraries, kernel services, daemons, and
test applications.

Libfabric is a library that defines and exports the user-
space API of OFI, and is typically the only software that
applications deal with directly. Libfabric is supported on
commonly available Linux based distributions. Libfabric is
independent of the underlying networking protocols, as well
as the implementation of the networking devices.

OFI is based on the notion of application centric I/O,
meaning that the libfabric library is designed to align fabric
services with application needs, providing a tight semantic
fit between applications and the underlying fabric hardware.
This reduces overall software overhead and improves appli-
cation efficiency when transmitting or receiving data over a
fabric.

II. MOTIVATIONS

The motivations for developing OFI evolved from expe-
rience by many different classes of users of the existing
OpenFabrics Software (OFS), which is produced and dis-
tributed by the OpenFabrics Alliance (OFA) [1]. Starting
as an implementation of the InfiniBand Trade Association
(IBTA) Verbs specification [2], this software evolved to
deal with both the iWARP specifications [3–5] and later
the IBTA RoCE specifications [6], as well as with a series
of enhancements to InfiniBand and its implementations. As
was inevitable during the rapid growth of these technologies,
new ideas emerged about how users and middleware could
best access the features available in the underlying hardware.
In addition, new applications appeared with the potential to
utilize network interconnects in unanticipated ways. Finally,



whole new paradigms, such as Non-Volatile Memory (NVM)
matured to the stage where closer integration with RDMA
became both desirable and feasible.

At the 2013 SuperComputing Conference a “Birds-of-a-
Feather” (BoF) meeting was held to discuss these ideas,
and from that came the impetus to form what eventually
came to be know as the OpenFabrics Interface Working
Group (OFIWG). From the beginning, this group sought to
embrace a wide spectrum of user communities who either
were already using OFS, who were already moving beyond
OFS, or who had become interested in high-performance
interconnects. These communities were contacted about con-
tributing their ideas, complaints, suggestions, requirements,
etc. about the existing and future state of OFS, as well
as about interfacing with high-performance interconnects in
general.

The response was overwhelming. OFIWG spent months
interacting with many enthusiastic representatives from the
various groups, including but not limited to MPI, SHMEM,
PGAS, DBMS, and NVM. The result was a cumulative re-
quirements document containing 168 specific requirements.
Some requests were educational – we need good user-level

on-line documentation from the beginning. Some were orga-
nizational – we need a well-defined revision and distribution
mechanism. Some were practical – we need a well-defined
suite of examples and tests. Some were very “motherhood
and apple-pie” – the future requires scalability to millions
of communication peers. Some were very specific to a
particular user community – provide tag-matching that could
be utilized by MPI. Some were an expansion of existing OFS
features – provide a full set of atomic operations. Some were
a request to revisit existing OFS features – redesign memory
registration. Some were aimed at the fundamental structure
of the interface – divide the world into applications and
providers, and allow users to select appropriate providers
by interrogating them to discover the features they are able
to provide. Some were entirely new – provide remote byte-
level addressing.

After examining the major requirements, including a
requirement for independence from any given network tech-
nology and a requirement for an API which is more abstract
than other network APIs and hence more closely aligned
with application usage of the API, the OFIWG concluded
that a new API based solely on application requirements was

Figure. 1: Architecture of libfabric and an OFI provider layered between applications and a hypothetical NIC



the appropriate direction.

III. ARCHITECTURAL OVERVIEW

Figure 1 highlights the general architecture of the two
main OFI components, the libfabric library and an OFI
provider, as they are situated between OFI enabled appli-
cations and a hypothetical NIC that supports process direct
I/O.

The libfabric library defines the interfaces used by appli-
cations, and provides some generic services. However, the
bulk of the OFI implementation resides in the providers.
Providers plug into libfabric and supply access to fabric
hardware and services. Providers are often associated with
a specific hardware device or NIC. Because of the structure
of libfabric, applications access the provider implementation
directly for most operations in order to ensure the lowest
possible software latencies.

As captured in Figure 1, libfabric can be grouped into
four main services.

A. Control Services

These are used by applications to discover information
about the types of communication services available in the
system. For example, discovery will indicate what fabrics
are reachable from the local node, and what sort of commu-
nication each fabric provides.

The discovery services are defined such that an application
can request specific features, referred to as capabilities,
from the underlying provider, for example, the desired com-
munication model. In responding, a provider can indicate
what additional capabilities an application may use without
negatively impacting performance or scalability. In order
to ensure the tightest semantic fit between the application
software and the underlying fabric hardware, a provider
can use the discovery interface to inform applications on
how it may best be used. It does this by setting mode bits
which specify limitations on how a provider should be used
in order to provide the best performance. Mode bits are
restrictions that often have a lower impact on performance
if implemented by higher level software than at the provider
level.

The result of the discovery process is that a provider uses
the application’s request to select a software path that is best
suited for that application’s needs.

B. Communication Services

These services are used to set up communication between
nodes. They include calls to establish connections (con-
nection management) as well as the functionality used to
address connectionless endpoints (address vectors).

Connection interfaces are integrated directly into libfabric,
which allows hiding fabric and hardware specific details
used to connect and configure communication endpoints.
Although libfabric does not define a connection protocol,

it supports a 3-way handshake that is commonly used. Lib-
fabric also allows for applications to exchange application
specific data as part of their connection setup.

Address vectors are designed around minimizing the
amount of memory needed to store addressing data for
potentially millions of remote peers. A remote peer can be
referenced by simply assigning it an index into an address
vector, which maps well to applications such as MPI and
SHMEM. Alternatively, a remote peer can be referenced
using a provider specified address, an option that allows data
transfer calls to pass encoded addressing data directly to the
hardware, avoiding additional memory reads during the data
transmission.

C. Completion Services

Libfabric exports asynchronous interfaces, and completion
services are used to report the results of previously initi-
ated asynchronous operations. Completions may be reported
either by using event queues, which provide details about
the operation that completed, or by lower-impact counters,
which simply return the number of operations that have
completed.

Applications select the type of completion structure. Dif-
ferent completion structures provide varying amounts of
information about a completed request. This allows for creat-
ing compact arrays of completion structures, and ensures that
data fields that would otherwise be ignored by an application
are not filled in by a provider.

D. Data Transfer Services

These services are sets of interfaces designed around
different communication paradigms. Figure 1 shows four
basic data transfer interface sets, plus triggered operations
that are strongly related to the data transfer operations.

(i) Message queues expose the ability to send and receive
data in which message boundaries are maintained. They act
as FIFOs, with sent messages matched with receive requests
in the order that messages are received.

(ii)Tag matching is similar to message queues in that it
maintains message boundaries, but differs in that received
messages are directed to receive requests based on small
steering tags that are carried in the sent message.

(iii) RMA stands for “Remote Memory Access”. RMA
transfers allow an application to write data from local
memory directly into a specified memory location in a target
process, or to read data into local memory directly from a
specified memory location in a target process.

(iv) Atomic operations are similar to RMA transfers in
that they allow direct access to a specified memory location
in a target process, but the differ in that they allow for
manipulation of the value found in that memory, such as
incrementing or decrementing it.

Different data transfer interfaces are defined in order
to eliminate branches that would occur in the provider if



only a single, more general function call were defined.
This eliminates checks inside the provider, enabling it to
preformat command buffers to further reduce the number of
instructions executed in a transfer.

IV. OBJECT MODEL

The libfabric architecture is based on object-oriented
design concepts. At a high-level, individual fabric services
are associated with a set of interfaces. For example, RMA
services are accessible using a set of well-defined functions.
These interface sets are then associated with objects exposed
by libfabric. The relationship between an object and an
interface set is roughly similar to that between an object-
oriented class and its member functions, although the actual
implementation differs for performance and scalability rea-
sons.

An object is configured based on the results of the
discovery services. Providers dynamically associate objects
with interface sets based on the modes supported by the
provider and the capabilities requested by the application.
This enables optimized code paths between the application
and fabric hardware that is based on the expected usage
model, with the usage conveyed during initialization.

Figure 2 shows a high-level view of the parent-child re-
lationships between libfabric objects, with details described
below.

Figure. 2: Object Model of libfabric

(i) Fabric: A fabric represents a collection of hardware
and software resources that access a single physical or virtual
network. For example, a fabric may be a single network
subnet. All network ports on a system that can communicate
with each other through the fabric belong to the same fabric
domain. A fabric can share network addresses with multiple
providers.

A fabric not only includes local and remote NICs, but
corresponding software, switches, routers, and any neces-
sary fabric or subnet management components. Fabrics are
identified by a named string and encapsulate network based
events and topology data.

(ii) Domain: A domain represents a logical connection
into a fabric. For example, a domain may map to a physical

or virtual NIC. A domain defines the boundary within which
fabric resources may be associated. Each domain belongs to
a single fabric.

The properties of a domain describe how associated re-
sources will be used. Domain attributes include information
about the application’s threading model, and how fabric
resources may be distributed among threads. It also de-
fines interactions that occur between endpoints, completion
queues and counters, and address vectors. The intent is for
an application to convey enough data that the provider can
select an optimized implementation tailored to its needs.

(iii) Passive Endpoint: Passive endpoints are used by
connection-oriented protocols to listen for incoming connec-
tion requests. Conceptually, they are equivalent to listening
sockets. Passive endpoints often map to software constructs,
and may span multiple domains.

(iv) Active Endpoint: An active endpoint (or, simply,
endpoint) represents a communication portal, and is con-
ceptually similar to a socket. All data transfer operations
are initiated on endpoints.

Endpoints are usually associated with a transmit context
and/or a receive context. Transmit and receive contexts are
often implemented using hardware queues that are mapped
directly into the process’s address space, which enables
bypassing the operating system kernel for data transfers,
though OFI does not require this implementation. Data
transfer requests are converted by the underlying provider
into commands that are inserted into transmit and/or receive
contexts.

A more advanced usage model of endpoints allows for
resource sharing. Because transmit and receive contexts
may be associated with limited hardware resources, libfabric
defines mechanisms for sharing contexts among multiple
endpoints. Shared contexts allow an application or resource
manager to prioritize where resources are allocated and how
shared hardware resources should be used.

In contrast with shared contexts, the final endpoint model
is known as a scalable endpoint. Scalable endpoints allow
a single endpoint to take advantage of multiple underlying
hardware resources by having multiple transmit and/or re-
ceive contexts. An application can direct data transfers to
use a specific context, or the provider can select which
context to use. Each context may be associated with its
own completion queue. Scalable contexts allow applications
to separate resources to avoid thread synchronization or
data ordering restrictions, without increasing the amount of
memory needed for addressing.

(v) Event Queue: An event queue (EQ) is used to col-
lect and report the completion of asynchronous operations
and events. It handles control events that are not directly
associated with data transfer operations, such as connection
requests and asynchronous errors.

Applications directly or indirectly control the types of
events that are received on an event queue. An event queue



supports an interface that is flexible enough to handle almost
any type of event in an efficient manner.

(vi) Completion Queue: A completion queue (CQ) is a
high-performance queue used to report the completion of
data transfer operations. An endpoint is associated with
one or more completion queues. An endpoint may direct
completed transmit and receive operations to separate com-
pletion queues, or the same queue. The format of events read
from a completion queue is determined by an application.
This enables compact data structures with minimal writes
to memory. Additionally, the CQ interfaces are optimized
around reporting completions for operations that completed
successfully, with error completions handled “out of band”.
This allows error events to report additional data without
incurring additional overhead that would be unnecessary in
the common case of a successful transfer.

(vii) Completion Counter: A completion counter is a
lightweight alternative to a completion queue, in that its use
simply increments a counter rather than placing an entry
into a queue. Similar to CQs, an endpoint is associated
with one or more counters. However, counters provide finer
granularity in the types of completions that they can track.
Completion counters and queues may be used together.

(viii) Wait Set: A wait set provides a single underlying
wait object to be signaled whenever a specified condition
occurs on an event queue, completion queue, or counter
belonging to the set. Wait sets enable optimized methods for
applications to use in place of more generic native operating
system constructs. Applications can request that a specific
type of wait object be used, such as a file descriptor, or allow
the provider to select an optimal object. The latter grants
flexibility in current or future underlying implementations.

(ix) Poll Set: Although libfabric is architected to support
providers that offload data transfers directly into hardware,
it supports providers that use the host CPU to progress data
transfer operations. In the latter case, a thread running on
the host CPU may be needed to execute software needed to
complete a data transfer. Libfabric defines a manual progress
model where the application agrees to use its threads for this
purpose, which avoids the need for additional threads being
allocated by the underlying software libraries. A poll set
is defined to optimize for this situation. A poll set allows
an application to group together multiple objects such that
progress can be driven across all associated data transfers.

(x) Memory Region: A memory region describes an appli-
cation’s local memory buffers. In order for a fabric provider
to access application memory during certain types of data
transfer operations, such as RMA and atomic operations,
the application must first grant the appropriate permissions
to the fabric provider by constructing a memory region.

Libfabric defines multiple modes for creating memory
regions. It supports a method that aligns well with existing
InfiniBandTM and iWARPTM hardware, but also allows for
mechanisms needed to scale to millions of parallel peers.

(xi) Address Vector: An address vector is used by con-
nectionless endpoints to map higher-level addresses which
may be more natural for an application to use, such as
IP addresses, into fabric-specific addresses. This allows
providers to reduce the amount of memory required to
maintain large address look-up tables, and to eliminate
expensive address resolution and look-up methods during
data transfer operations.

The libfabric object model that has been defined is exten-
sible. Additional objects can easily be introduced, or new
interfaces to an existing object can be added. However,
object definitions and interfaces are designed specifically to
promote software scaling and low-latency, where needed.
Effort went into ensuring that objects provided the correct
level of abstraction in order to avoid inefficiencies in either
the application or the provider

V. CURRENT STATE

An initial (1.0) release of libfabric is now available [7, 8]
with complete user-level documentation (“man pages”) [9].
This release provides enough support for HPC applications
to adapt to using its interfaces. Areas where improvements
can be made should be reported back to the OFI working
group, either by posting concerns to the ofiwg mailing list,
bringing it to the work group’s attention during one of
the weekly conference calls, or by opening an issue in the
libfabric GitHubTM database. Although the API defined by
the 1.0 release is intended to enable optimized code paths,
provider optimizations that take advantage of those features
will be phased in over the next several releases.

The 1.0 release supports several providers. A sockets
provider is included for developmental purposes. The sock-
ets provider runs on both Linux and Mac OS X systems and
implements the full set of features exposed by libfabric. A
general verbs provider allows libfabric to run over hardware
that supports the libibverbs interface. The verbs provider is
limited to supporting only connection-oriented endpoints and
select data transfer services (message queue and RMA), but
future versions will add support for unconnected endpoints
and all data transfer services. A usNIC (user-space NIC)
provider supports Cisco’s usNIC Ethernet hardware. The
usNIC provider enables direct hardware access for UDP
based applications. It supports libfabric’s connectionless
endpoints and message queue service. Future versions of
the usNIC provider will increase the types of endpoints and
data transfer services that are supported. The last provider
supports Intel’s Performance Scaled Messaging (PSM) inter-
face. The PSM provider allows direct application access to
the InfiniBand link layer. It supports all data transfer services
over reliable, unconnected endpoints. Future support will
include Intel’s new Omni Path Architecture, and the Cray
Aries Network.

In addition to the current OFI providers, support for
additional hardware is actively under development. Opti-



mizations are also under development for select hardware
and vendors. The details of this work will become available
as it moves closer to completion.

REFERENCES

[1] OpenFabrics Alliance, “http://www.openfabrics.org.”
[2] Infiniband Trade Association, “Infiniband Architecture Speci-

fication Volume 1, Release 1.2.1,” Nov. 2007.
[3] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia, “A

Remote Direct Memory Access Protocol Specification,” RFC
5040, Oct. 2007. [Online]. Available: http://www.ietf.org/rfc/
rfc5040.txt

[4] H. Shah, J. Pinkerton, R. Recio, and P. Culley, “Direct Data

Placement over Reliable Transports,” RFC 5041, Oct. 2007.
[Online]. Available: http://www.ietf.org/rfc/rfc5041.txt

[5] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier, “Marker
PDU Aligned Framing for TCP Specification,” RFC 5044, Oct.
2007. [Online]. Available: http://www.ietf.org/rfc/rfc5044.txt

[6] Infiniband Trade Association, “Supplement to Infiniband Ar-
chitecture Specification Volume 1, Release 1.2.1: Annex A16:
RDMA over Converged Ethernet (RoCE),” Apr. 2010.

[7] OpenFabrics Interfaces, “https://github.com/ofiwg/libfabric.”
[8] Libfabric Programmer’s Manual,

“http://ofiwg.github.io/libfabric.”
[9] Libfabric man pages v1.0.0 release,

“http://ofiwg.github.io/libfabric/v1.0.0/man.”


