
IB Transport Specific Extensions for DAT 2.0

Final Draft

 ii

Contents
1. Data Structures and Types.. 1-1
1.1 IA specific attributes ..1-1
1.2 Definitions (dat_ib_extensions.h) ..1-1

1.2.1 DAT_IB_EVENT_NUMBER ..1-1
1.2.2 DAT_IB_OP...1-2
1.2.3 DAT_IB_EXT_TYPE ...1-2
1.2.4 DAT_IB_STATUS..1-3
1.2.5 DAT_IB_RETURN...1-3
1.2.6 DAT_IB_DTOS..1-3
1.2.7 DAT_IB_HANDLE_TYPE..1-4
1.2.8 DAT_IB_EVD_EXTENSION_FLAGS..1-4
1.2.9 DAT_IB_MEM_PRIV_FLAGS ...1-4
1.2.10 DAT_IB_IMMED_DATA ..1-5
1.2.11 DAT_IB_EXTENSION_EVENT_DATA ...1-5

2. APIs ...2-6
2.1 RDMA write with immediate data ..2-7

2.1.1 Consumer Requirement ..2-7
2.1.2 Transport Neutral Alternatives ..2-7
2.1.3 Transport Requirements ...2-7
2.1.4 Function Call ...2-8

2.2 Atomic Operations ...2-12
2.2.1 Consumer Requirement ..2-12
2.2.2 Transport Neutral Alternatives ..2-12
2.2.3 Transport Requirements ...2-12
2.2.4 Atomicity Guarantees..2-13
2.2.5 Function Calls..2-14

 1-1

1. Data Structures and Types

1.1 IA specific attributes

IA specific attributes for transport extension support are returned with dat_ia_query() using the proper
DAT_IA_ATTR_MASK settings. With mask set to DAT_IA_FIELD_IA_EXTENSION, the attribute
value will be set to DAT_EXTENSION_IB if the provider supports IB transport extensions. With the
query mask set to DAT_IA_FIELD_IA_EXTENSION_VERSION the consumer can get the version
number of the extension interface supported.

1.2 Definitions (dat_ib_extensions.h)
All IB prototypes, macros, types, and defines for provider specific extensions are defined in
~/include/dat_ib_extensions.h. DAT 2.0 defines, in ~/include/dat.h, a generic event data and the extended
operations define the type of data provided with each event and operation type.

1.2.1 DAT_IB_EVENT_NUMBER
The DAT_IB_EVENT_NUMBER enum specifies the type of IB extension events.

All IB extended DTO events are reported with the single DAT_IB_DTO_EVENT type. The
specific extended DTO operation is reported with a DAT_IB_DTOS type in the operation field of
the base DAT_EVENT data structure. All other extended events are identified by unique
DAT_IB_EVENT_NUMBER types.

typedef enum dat_ib_event_number
{
 DAT_IB_DTO_EVENT = DAT_IB_EXTENSION_RANGE_BASE,
 DAT_IB_EXT_EVENT1,
 DAT_IB_EXT_EVENT2

} DAT_IB_EVENT_NUMBER;

The enumeration will be extended as new extension events are added.

DAPL Extension Design and API

 1-2

1.2.2 DAT_IB_OP
The DAT_IB_OP enum specifies the type of extension operation to perform. The IB operation
type is provided as the DAT_EXTENDED_OP parameter via the DAT_EXTENSION_FUNC
call to specify the IB extended operation to call. See section 2 for details on extended operation
macros and API mappings.

typedef enum dat_ib_op
{
 DAT_IB_FETCH_AND_ADD_OP,
 DAT_IB_CMP_AND_SWAP_OP,
 DAT_IB_RDMA_WRITE_IMMED_OP,
 DAT_IB_NON_DTO_TYPE1_OP,
 DAT_IB_NON_DTO_TYPE2_OP

} DAT_IB_OP;

The enumeration will be extended as new extension operations are added.

1.2.3 DAT_IB_EXT_TYPE
The DAT_IB_EXT_TYPE enum specifies the type of extension operation that just completed.
All IB extended completion types both, DTO and NON-DTO, are reported in the extended
operation type with the single DAT_IB_DTO_EVENT type. The specific extended DTO
operation is reported with a DAT_IB_DTOS type in the operation field of the base DAT_EVENT
structure. All other extended events are identified by unique DAT_IB_EVENT_NUMBER types.

typedef enum dat_ib_ext_type
{
 DAT_IB_FETCH_AND_ADD,
 DAT_IB_CMP_AND_SWAP,
 DAT_IB_RDMA_WRITE_IMMED,
 DAT_IB_RECV_IMMED_DATA,
 DAT_IB_NON_DTO_TYPE1,
 DAT_IB_NON_DTO_TYPE2

} DAT_IB_EXT_TYPE;

The enumeration will be extended as new extension event types are added.

 1-3

1.2.4 DAT_IB_STATUS
The DAT_IB_STATUS enum specifies the type of extension operation to call. All IB extended
operations status is reported via the status field in the DAT_IB_EXTENSION_EVENT_DATA
structure.

typedef enum dat_ib_status
{
 DAT_IB_OP_SUCCESS,
 DAT_IB_OP_ERR1,
 DAT_IB_OP_ERR2

} DAT_IB_STATUS;

The enumeration will be extended as new extension operations are added.

1.2.5 DAT_IB_RETURN
The DAT_IB_RETURN enum specifies the extended return codes for IB extension calls that do
not map directly to existing DAT_RETURN definitions.

typedef enum dat_ib_return
{

DAT_IB_ERR = DAT_EXTENSION_BASE

} DAT_IB_RETURN;

The enumeration will be extended as new extension operation return codes are added.

1.2.6 DAT_IB_DTOS
The DAT_IB_DTOS enum specifies the types of extended DTO operations.

typedef enum dat_ib_dtos
{
 DAT_IB_DTO_RDMA_WRITE_IMMED = DAT_DTO_EXTENSION_BASE,
 DAT_IB_DTO_RECV_IMMED,
 DAT_IB_DTO_FETCH_AND_ADD,
 DAT_IB_DTO_CMP_AND_SWAP

} DAT_IB_DTOS;

The enumeration will be extended as new extended DTO operations are added.

DAPL Extension Design and API

 1-4

1.2.7 DAT_IB_HANDLE_TYPE
The DAT_IB_HANDLE_TYPE enum specifies the types of extended handles that do not map
directly to existing DAT_HANDLE_TYPE definitions.

typedef enum dat_ib_handle_type
{
 DAT_IB_HANDLE_TYPE_EXT = DAT_HANDLE_TYPE_EXTENSION_BASE

} DAT_IB_HANDLE_TYPE;

The enumeration will be extended as new extended handle types are added.

1.2.8 DAT_IB_EVD_EXTENSION_FLAGS
The DAT_IB_EVD_EXTENSION_FLAGS enum specifies the EVD extension flags
that do not map directly to existing DAT_EVD_FLAGS. This new EVD flag
has been added to identify an extended EVD that does not fit the
existing stream types.

typedef enum dat_ib_evd_extension_flags
{
 DAT_IB_EVD_EXTENSION_FLAG = DAT_EVD_EXTENSION_BASE

} DAT_IB_EVD_EXTENSION_FLAGS;

The enumeration will be extended as new extended handle types are added.

1.2.9 DAT_IB_MEM_PRIV_FLAGS

The DAT_IB_MEM_PRIV_FLAGS enum specifies the memory privilege extension
flags that do not map directly to existing DAT_MEM_PRIV_FLAGS. New
privilege flags have been added for atomic operations.

typedef enum dat_ib_mem_priv_flags
{
 DAT_IB_MEM_PRIV_REMOTE_ATOMIC = DAT_MEM_PRIV_EXTENSION_BASE

} DAT_IB_MEM_PRIV_FLAGS;

Definition will be extended as new extension memory privilege flags are added.

 1-5

1.2.10 DAT_IB_IMMED_DATA
The DAT_IB_DTO_DATA enum specifies the extension data reference by the
DAT_EXTENSION_EVENT_DATA structure field when event number is set to
DAT_IB_DTO_EVENT and the extension type is set to DAT_IB_RECV_IMMED_DATA. All
DTO information, including an operation set to DAT_IB_DTO_RECV_IMMED, will be
specified in the DAT_EVENT_DATA.DAT_DTO_COMPLETION_EVENT_DATA structure.

typedef struct dat_ib_immed_data
{

DAT_UINT32 data;

} DAT_IB_IMMED_DATA;

New data structures will be added as new extension data types are defined.

1.2.11 DAT_IB_EXTENSION_EVENT_DATA

/*
 * Definitions for extended event data:
 * When dat_event->event_number >= DAT_IB_EXTENSION_BASE_RANGE
 * then dat_event->extension_data == DAT_EXTENSION_EVENT_DATA type
 * and ((DAT_EXTENSION_EVENT_DATA*)dat_event->extension_data)->type
 * specifies extension data values.
 * NOTE: DAT_EXTENSION_EVENT_DATA cannot exceed 64 bytes as defined by
 * "DAT_UINT64 extension_data[8]" in DAT_EVENT (dat.h)
 */
typedef struct dat_ib_extension_event_data
{
 DAT_IB_EXT_TYPE type;
 DAT_IB_STATUS status;
 union {
 DAT_IB_IMMED_DATA immed;
 } val;

} DAT_IB_EXTENSION_EVENT_DATA;

DAPL Extension Design and API

 2-6

2. APIs
The following function prototypes are actually implemented as pre-processor macros. The macro
validates that extensions are supported and then calls the DAT_EXTENSION_FUNC vector in the
dat_provider structure. The type definition for the core extension call is as follows:

typedef DAT_RETURN (*DAT_EXTENSION_FUNC) (
 IN DAT_HANDLE, /* DAT handle */
 IN DAT_EXTENDED_OP, /* DAT extension operation */
 IN va_list); /* va_list, variable arguments*/

Each API below details input/output arguments and completion semantics. Explicit return codes are not
given but they can be assumed to be logical uses of existing DAT return codes.

A uDAPL application can determine which extensions and versions are supported by a uDAPL provider
by making the ep_ia_query() call and iterating the DAT_NAMED_ATTR array pointed to by the
provider_specific_attr member in DAT_PROVIDER_ATTR. The DAT_NAMED_ATTR type contains
two string pointers of name and value. The table below specifies the name/extension relationship. In
most cases, simply having the name defined implies support and the string value does not supply
additional context.

Extension Name Attribute

Indicates general support for extensions DAT_EXTENSION_INTERFFACE

Indicates version of extended API DAT_EXTENSION_VERSION

dat_ib_post_fetch_and_add DAT_IB_FETCH_AND_ADD_OP

dat_ib_post_cmp_and_swap DAT_IB_CMP_AND_SWAP_OP

dat_ib_post_rdma_write_immed_data DAT_IB_IMMED_DATA_OP

 2-7

2.1 RDMA write with immediate data

2.1.1 Consumer Requirement
Applications need an optimized mechanism to notify the receiving end that RDMA write data has
completed beyond the two operation method currently required (RDMA write followed by
message send). IB provides a RDMA write operation that will support 4-bytes of inline data that
will be delivered at the time of remote completion of RDMA write operation is complete. It
avoids any latency penalties normally associated with a two operation method.

The initiating side exposes a 4-byte immediate data parameter for the application to set the inline
data. On the receiving side, the write with immediate completion notification must be indicated
through a receive completion with the 4-byte immediate data placed in the event. The consumer is
responsible for the byte order of the immediate data since it is completely opaque to the provider.

2.1.2 Transport Neutral Alternatives
RDMA providers supporting RDMA writes and message sends could collectively group the two
operations together to provide similar functionality. A bundled single door-bell mechanism could
be used that would optimize the work request operation on the initiator side. It is a little more
difficult on the receiving side where the transport provider has to distinguish between 4 bytes of
normal message data and 4 bytes of immediate data that belongs to the RDMA write. This
requires cooperation with the application so that receive buffers of the appropriate size are
allocated and managed on behalf of the transport provider.

2.1.3 Transport Requirements
Additional transport requirements for DAT Provider-to- Provider interaction above the standard
requirements stated in Chapter 4:

1. There is a one-to-one correspondence between send and RDMA Write with Immediate
Data operations on one Endpoint of the Connection and receive operations on the other
Endpoint of the Connection.

2. There is no correspondence between RDMA operations on one Endpoint of the
Connection and receive or send data transfer operation on the other Endpoint of the
Connection with exception of RDMA Write with Immediate Data.

3. Receive operations on a Connection must be completed in the order of posting of their
corresponding sends and RDMA Write with Immediate Data.

4. RDMA Write with Immediate Data operation posted on a Connection must have its data
payload delivered to the target memory region and Immediate Data delivered to the
matching receive operation without errors prior to the successful receive completion.

DAPL Extension Design and API

 2-8

2.1.4 Function Call

Synopsis:

DAT_RETURN dat_ib_post_rdma_write_with_immed (

 IN DAT_EP_HANDLE ep_handle,
IN DAT_COUNT num_segments
IN DAT_LMR_TRIPLET *local_iov,
IN DAT_DTO_COOKIE user_cookie,
IN DAT_RMR_TRIPLET *remote_iov,
IN DAT_UINT32 immediate_data,
IN DAT_COMPLETION_FLAGS completion_flags);

Parameters:

ep_handle Handle for an instance of the Endpoint

num_segments Number of lmr_triplets in local_iov

local_iov: I/O Vector specifying the local buffer from which the
data is transferred.

user_cookie User-provided cookie that is returned to a consumer
at the completion of the RDMA write with immediate

remote_iov I/O Vector specifying the remote buffer to which the
data shall be written.

immediate_data Immediate data to be transferred to the remote side
with the RDMA write data.

completion_flags Flags for posted RDMA Write. The default
DAT_COMPLETION_DEFAULT_FLAG is 0 (see Dat
2.0 specification, Appendix A.4 for definitions.

RDMA Write with Immediate Data DTO Flag Definitions

Features Definition/Bit Value Description Caveat
 0x00 Generate Completion Completion

Suppression DAT_COMPLETION_
SUPPRESS_FLAG

0x01 Suppress successful
Completion

 0x00 No request for
notification completion
for matching receive on
the other side of the
connection

Solicited Wait

DAT_COMPLETION_
SOLICITED_WAIT_
FLAG

0x02 Request for notification
completion for matching
receive on the other side
of the connection.

Notification of
Completion

 0x00 Notification Completion Local Endpoint
must be

 2-9

DAT_COMPLETION_
UNSIGNALLED_
FLAG

0x04 Non-notification
Completion

configured for
Notification
Suppression.

 0x00 No request for RDMA
Read Barrier Fence

Barrier Fence

DAT_COMPLETION_
BARRIER_FENCE_
FLAG

0x08 Request for RDMA
Read Barrier Fence

Description:
dat_ib_post_rdma_write_with_immed requests a transfer of all the data from the local_iov over
the connection of the ep_handle Endpoint into the remote_buffer and transfer of the
immediate_data to the remote end of teh connection. The dat_ib_post_rdma_write_with_immed
will consume a Recv buffer on the remote side of the connection. The matching Recv operation
will complete successfully only if both RDMA data and Immediate data were successfully
delivered into specified locations.

num_segments specifies the number of segments in the local_iov. The local_iov segments are
traversed in the I/O Vector order until all the data is transferred. The actual order of transfer of
the data from the segments is left to the implementation. The local_iov and the remote_buffer
specifications should adhere to the rules defined in Appendix A.4.

The requested length of the data transfer is specified by the local buffer length. That is the sum of
the segment_lengths of local_iov. This does not include Immediate Data.

A Consumer shall not modify the local_iov or its content until the DTO is completed. When
Consumer does not adhere to this rule, the behavior of the Provider and the underlying Transport
is not defined. Providers that allow Consumers to get ownership of the local_iov but not the
memory it specifies back after the dat_ib_post_rdma_write_with_immed returns, should
document this behavior and also specify its support in Provider attributes. This behavior allows
Consumers full control of the local_iov after dat_ib_post_rdma_write_with_immed returns.
Because this behavior is not guaranteed by all Providers, portable Consumers shall not rely on
this behavior. Consumers shall not rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_ib_post_rdma_write_with_immed is at least the
equivalent of posting an RDMA Write with Immediate Data operation directly by native
Transport. Providers shall avoid resource allocation as part of
dat_ib_post_rdma_write_with_immed to ensure that this operation is non-blocking.

The completion of the posted dat_ib_post_rdma_write_with_immed is reported to the Consumer
asynchronously through a DTO Completion event based on the specified completion_flags value.
The value of DAT_COMPLETION _ UNSIGNALLED_FLAG is only valid if the Endpoint
Request Completion Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_
INVALID_PARAMETER is returned.

The user_cookie allows Consumers to have unique identifiers for each DTO. These identifiers are
completely under user control and are opaque to the Provider. There is no requirement on the
Consumer that the value user_cookie should be unique for each DTO. The user_cookie is
returned to the Consumer in the Completion event for the posted RDMA Write.

DAPL Extension Design and API

 2-10

The operation is valid for the Endpoint in the DAT_EP_STATE_ CONNECTED and
DAT_EP_STATE_DISCONNECTED states. If the operation returns successfully for the Endpoint
in the DAT_EP_STATE_ DISCONNECTED state, the posted
dat_ib_post_rdma_write_with_immed is immediately flushed to request_evd_handle.

If the reported status of the Completion DTO event corresponding to the posted
dat_ib_post_rdma_write_with_immed DTO is not DAT_DTO_SUCCESS, the transfered_ length
in the DTO Completion event is not defined.

dat_ib_post_rdma_write_with_immed is asynchronous and non-blocking. Its thread safety is
Provider-dependent. This routine is always thread safe with respect to dat_ib_post_recv.

Event Type and Data:

EP Event Number Extended DTOS DTO and EXTENSION

DATA

Initiator DAT_IB_DTO_EVENT DAT_IB_DTO_RDMA_WRITE_IMMED N/A

Remote DAT_IB_DTO_EVENT DAT_IB_DTO_RECV_IMMED transfered_length
is set to rdma
write length and
DAT_IB_IMMED_DATA
contains 32 bit
immediate data

Return Codes:

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER
Invalid parameter; For example, one of the IOV

segments pointed to a memory outside its LMR, or the
number of IOVs specified exceeds EP capacity.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is invalid

DAT_INVALID_STATE
Endpoint was not in the DAT_EP_

STATE_CONNECTED or
DAT_EP_STATE_DISCONNECTED state

DAT_LENGTH_ERROR
The size of the receiving buffer was too small for sending
buffer data. The size of the remote buffer was too small

for the data of the local buffer.

DAT_PROTECTION_VIOLATION

remote memory access. Protection Zone mismatch
between either an LMR of one of the local_iov segments

and the local Endpoint or the rmr_context and the
remote Endpoint.

DAT_PRIVILEGES_VIOLATION

Privileges violation for local or remote memory access.
Either one of the LMRs used in local_iov was invalid or

did not have the local read privileges, or rmr_context did
not have the remote write privileges.

 2-11

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider.

Usage:
For the best dat_ib_post_rdma_write_with_immed operation performance, the Consumer should
align each buffer segment of local_iov to the Optimal Buffer Alignment attribute of the Provider.
For portable applications, the Consumer should align each buffer segment of local_iov to
DAT_OPTIMAL_ALIGNMENT.

DAT does not guarantee any ordering between multiple RDMA DTOs even over the same
connection to the same remote memory.

The pipeline of RDMA DTOs over a single connection can proceed simultaneously. Thus, if they
access the same remote memory the result of the remote buffer is indeterminate. The result of
multiple dat_ib_post_rdma_write_with_immed operations accessing the same buffer
simultaneously can range from data in the buffer from any one of those RDMA Write operations,
to data in the buffer being a mixture from multiple dat_ib_post_rdma_write_with_immed
operations. Consumer can control RDMA Read ordering with respect to other RDMA Writes via
DAT_ COMPLETION_BARRIER_FENCE_FLAG.

If Consumer desires a deterministic result they should use ULP protocol to ensure that only one
RDMA Write with immediate operation accesses remote buffer at a time. For example, they can
use 0-size RDMA Read between a pair of RDMA Writes that access the same remote location.

Rationale:
Each instance of multiple dat_ib_post_rdma_write_with_immed operations accessing the same
remote location generates a return code the same as if it were a single
dat_ib_post_rdma_write_with_immed accessing that memory location. In other words, no error
will be generated because multiple dat_ib_post_rdma_write_with_immed operations access the
same memory location.

Model Implications:
The error behavior for the case when remote buffer is too small for transferred data may be
transport specific. The remote buffer size is defined the size of the RMR and not necessarily the
segment_length of the DAT_RMR_TRIPLET specified locally.

The error can be provided synchronously or asynchronously. If the error is return synchronously
then DAT_LENGTH_ERROR is returned. A synchronously returned error has no effect on the
state of the Endpoint to which operation was posted or any other posted operations. A behavior of
the connection as well as the type of the asynchronous error return when an error is return
asynchronously is defined by the underlying RDMA transport. For example, a connection may be
broken as the result of the asynchronous error. An asynchronous error may be return locally,
remotely or both.

DAPL Extension Design and API

 2-12

2.2 Atomic Operations

2.2.1 Consumer Requirement
Cluster applications need an optimized mechanism to synchronize data across the fabric. Atomic
operations such as compare_swap and fetch_add which execute a 64-bit operation at a specific
address on a remote node can be used for such a purpose. These operations provide the consumer
the ability to read, modify and write the destination address while at the same time guarantee that
no other read or write operation will occur across any other EP on the same HA. The scope may
optionally extend to HA capabilities of the provider. The atomic operation is expected to use the
same remote memory addressing mechanism as RDMA Reads and Writes. Atomic operations
will be supported on reliable connection services, will be naturally aligned on an 8 byte boundary,
does not need immediate data support, and will always return the original pre-operation remote
data into a local 64-bit memory address. All operations on the responder’s HA memory is done in
the native endian format of that memory system. All operations on the requestor’s memory are
done in the native endian format of the requestor.

2.2.2 Transport Neutral Alternatives
The feature is specific to IB and strongly recommends hardware support. There is no clear high-
performing transport neutral solution based on the requirement to atomically read, modify, and
write the 64-bit remote memory location while at the same time guarantee that no other EP will
write or read this address between the read and the write.

To perform this operation in software with a set of ULP messages or RDMA reads and writes
would adversely affect applications.

2.2.3 Transport Requirements
Additional transport requirements for DAT Provider-to-Provider interaction above the standard
requirements stated in Chapter 4:

1. There is no correspondence between ATOMIC operations on one Endpoint of the
Connection and receive or send data transfer operation on the other Endpoint of the
Connection.

2. If a RDMA READ work request is posted before an ATOMIC Operation work request
then the atomic may execute its remote memory operations before the previous RDMA
READ has read its data. This can occur because the responder is allowed to delay
execution of the RDMA READ. Strict ordering can be assured by posting the ATOMIC
Operation work request with the fence modifier. The fence modifier causes the requestor
to wait till the RDMA READ completes before issuing the ATOMIC Operation.

3. When a sequence of requests arrives at an EP, the ATOMIC Operation only accesses
memory after prior (non-RDMA READ) requests access memory and before subsequent
requests access memory. Since the responder takes time to issue the response to the
atomic request, and this response takes more time to reach the requestor and even more
time for the requestor to create a completion queue entry, requests after the atomic may
access the responders memory before the requestor writes the completion queue entry for
the ATOMIC Operation request.

4. Each ATOMIC Operation request requires an explicit response and acknowledge
message. An ATOMIC Operation response.

 2-13

2.2.4 Atomicity Guarantees

Atomicity of the read/modify/write on the responder’s node by the ATOMIC Operation shall be
assured in the presence of concurrent atomic accesses by other EPs on the same provider HA.

A provider may optionally assure atomicity of ATOMIC Operations in the presence of concurrent
memory accesses from other provider HA’s, IO devices, and CPUs.

DAPL Extension Design and API

 2-14

2.2.5 Function Calls

2.2.5.1 dat_ib_post_cmp_and_swap()

Synopsis:

DAT_RETURN
dat_ib_post_cmp_and_swap(
 IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT num_segments
IN DAT_UINT64 cmp_value,
IN DAT_UINT64 swap_value,
IN DAT_LMR_TRIPLET *local_iov,
IN DAT_DTO_COOKIE user_cookie,
IN DAT_RMR_TRIPLET *remote_iov,
IN DAT_COMPLETION_FLAGS completion_flags);

Parameters:

ep_handle Handle for an instance of the Endpoint

num_segments Number of lmr_triplets in local_iov

cmp_value 64 bit value used to compare with the remote memory
location

swap_value 64 bit value to swap remote memory if cmp_value
matches

local_iov: I/O Vector specifying the local buffer to which the
results of the atomic operation is transferred. Memory
privilege MUST be set to
DAT_IB_MEM_PRIV_REMOTE_ATOMIC when
registering this memory.

user_cookie User-provided cookie that is returned to a consumer
at the completion of the operation

remote_iov I/O Vector specifying the remote buffer to which the
data shall be written. Memory privilege MUST be set
to DAT_IB_MEM_PRIV_REMOTE_ATOMIC when
registering this memory.

completion_flags Flags for posted operation. The default
DAT_COMPLETION_DEFAULT_FLAG is 0 (see Dat
2.0 specification, Appendix A.4 for definitions.

Compare and Swap DTO Flag Definitions

Features Definition/Bit Value Description Caveat
Completion 0x00 Generate Completion

 2-15

DAT_COMPLETION_
SUPPRESS_FLAG

0x01 Suppress successful
Completion

Suppression

DAT_COMPLETION_
SOLICITED_WAIT_
FLAG

0x02 Request for notification
completion for matching
receive on the other side
of the connection.

 0x00 Notification Completion Notification of
Completion

DAT_COMPLETION_
UNSIGNALLED_
FLAG

0x04 Non-notification
Completion

Local Endpoint
must be
configured for
Notification
Suppression.

 0x00 No request for RDMA
Read and Atomic
Barrier Fence

Barrier Fence

DAT_COMPLETION_
BARRIER_FENCE_
FLAG

0x08 Request for RDMA
Read and Atomic Barrier
Fence

Description:

This call is modeled after the InfiniBand atomic Compare and Swap operation. The cmp_value is
compared to the 64 bit value stored at the remote memory location specified in remote_iov. If the
two values are equal, the 64 bit swap_value is stored in the remote memory location. In all cases,
the original 64-bit value stored in the remote memory location is copied to the local_iov. All
operations on the responder’s HA memory is done in the native endian format of that memory
system. All operations on the requestor’s memory are done in the native endian format of the
requestor.

The local_iov and the remote_iov specifications should adhere to the rules defined in Appendix
A.4. The virtual address shall be naturally aligned to an 8 byte boundary.

Providers shall not allow Consumers ownership of the local_iov or its memory after the
dat_ib_post_cmp_and_swap returns. A Consumer shall not read or modify the local_iov or its
content until the DTO is completed.

The DAT_SUCCESS return of the dat_ib_post_cmp_and_swap is at least the equivalent of
posting an atomic operation directly by native Transport. Providers shall avoid resource
allocation as part of dat_ib_post_cmp_and_swap to ensure that this operation is nonblocking.

The completion of the posted dat_ib_post_cmp_and_swap is reported to the Consumer
asynchronously through a DTO Completion event based on the specified completion_flags value.
The value of DAT_COMPLETION _ UNSIGNALLED_FLAG is only valid if the Endpoint
Request Completion Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_
INVALID_PARAMETER is returned.

The user_cookie allows Consumers to have unique identifiers for each DTO. These identifiers are
completely under user control and are opaque to the Provider. There is no requirement on the
Consumer that the value user_cookie should be unique for each DTO. The user_cookie is
returned to the Consumer in the Completion event for the posted dat_ib_post_cmp_and_swap.

DAPL Extension Design and API

 2-16

The operation is valid for the Endpoint in the DAT_EP_STATE_ CONNECTED and
DAT_EP_STATE_DISCONNECTED states. If the operation returns successfully for the Endpoint
in the DAT_EP_STATE_ DISCONNECTED state, the posted dat_ib_post_cmp_and_swap is
immediately flushed to request_evd_handle.

If the reported status of the Completion DTO event corresponding to the posted
dat_ib_post_cmp_and_swap DTO is DAT_DTO_SUCCESS, the original 64-bit value stored in
the remote memory location is copied to the local_iov and if the cmp_value is equal to the 64 bit
value stored at the remote memory location specified in remote_iov then the 64 bit swap_value is
stored in the remote memory location. If the cmp_value is not equal to the 64 bit value stored at
the remote memory location specified in remote_iov the value at the remote memory location
remains unchanged.

If the reported status of the Completion DTO event corresponding to the posted
dat_ib_post_cmp_and_swap DTO is not DAT_DTO_SUCCESS, the contents of the memory
specified by IO vectors local_iov and the remote_iov are not defined.

dat_ib_post_cmp_and_swap is asynchronous and non-blocking. Its thread safety is Provider-
dependent.

Event Type and Data:

Endpoint Event Number Extended DTOS Extended Event Data

Type

Initiator DAT_IB_DTO_EVENT DAT_IB_DTO_CMP_SWAP n/a

Remote n/a n/a n/a

Return Codes:

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER
Invalid parameter; For example, one of the IOV

segments pointed to a memory outside its LMR, or the
number of IOVs specified exceeds EP capacity.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is invalid

DAT_INVALID_STATE
Endpoint was not in the DAT_EP_

STATE_CONNECTED or
DAT_EP_STATE_DISCONNECTED state

DAT_LENGTH_ERROR
The size of the receiving buffer was too small for sending
buffer data. The size of the remote buffer was too small

for the data of the local buffer.

DAT_PROTECTION_VIOLATION

remote memory access. Protection Zone mismatch
between either an LMR of one of the local_iov segments

and the local Endpoint or the rmr_context and the
remote Endpoint.

DAT_PRIVILEGES_VIOLATION
Privileges violation for local or remote memory access.
Either one of the LMRs used in local_iov was invalid or

did not have the local read privileges, or rmr_context did

 2-17

not have the remote write privileges.
DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider.

Usage:
The EP attributes max_rdma_read_out and max_rdma_read_in include both outstanding RDMA
Read and IB atomic operations support by the underlying Transport.

If connection was established without outstanding RDMA Read/Atomic attributes matching on
Endpoints on both sides (outstanding RDMA Read/Atomic outgoing on one end is larger than the
outstanding RDMA Read/Atomic incoming on the other end), connection is broken when the
number of incoming RDMA Read/Atomic exceeds the outstanding RDMA Read/Atomic
incoming attribute of the Endpoint.

The local and remote atomic buffer memory requires atomic memory privileges of
DAT_IB_MEM_PRIV_REMOTE_ATOMIC. Failure to set up local and remote buffer memory
privileges for these Providers will result in asynchronous DTO completion error and connection
being broken.

DAT does not guarantee any ordering between multiple RDMA Read/atomic DTO even over the
same connection to the same remote memory. The pipeline of RDMA Read/atomic DTOs over a
single connection can proceed simultaneously. Thus, if they access the same remote memory the
result of the remote buffer is indeterminate. Consumer can control RDMA Read/atomic ordering
with respect to other RDMA Reads or Writes or Sends or Atomics via
DAT_COMPLETION_BARRIER_FENCE_FLAG.

Rationale:
Model Implications:
The number of posted RDMA Read/atomic operations on Send WQ can exceed
max_rdma_read_out attribute of the EP. DAT Provider ensures that the number of outstanding
atomic operations on the remote endpoint of the connection does not exceed the EP attribute.
Consumer should rely on its own atomic operation flow control to ensure that the number of
atomic operations for which completions have not been generated does not exceed the EP
max_rdma_read_out attribute value.

While Provider does guarantee flow control for RDMA Read/atomic DTOs (the maximum
number of RDMA Reads/atomics reaching the remote host simultaneously over a single
connection), Consumer should avoid posting more than max_rdma_read_out RDMA Read/atomic
operations to the connection. Since all DTOs posted to the Send WQ of the EP are processed in
order, inability to process an RDMA Read/Atomic that exceeds max_rdma_read_out will stall
processing of all other DTOs of the Send WQ of the EP. This is irrespective of the Consumer
specification of DAT_COMPLETION_BARRIER_FENCE_FLAG value that is Consumer
requested stalling of the Send WQ processing.

DAPL Extension Design and API

 2-18

2.2.5.2 dat_ib_post_fetch_and_add()

Synopsis:

DAT_RETURN
dat_ib_post_fetch_and_add(
 IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT num_segments
IN DAT_UINT64 add_value,
IN DAT_LMR_TRIPLET *local_iov,
IN DAT_DTO_COOKIE user_cookie,
IN DAT_RMR_TRIPLET *remote_iov,
IN DAT_COMPLETION_FLAGS completion_flags);

Parameters:

ep_handle Handle for an instance of the Endpoint

num_segments Number of lmr_triplets in local_iov

add_value 64 bit value used to compare with the remote memory
location

local_iov: I/O Vector specifying the local buffer to which the
results of the atomic operation is transferred. Memory
privilege MUST be set to
DAT_IB_MEM_PRIV_REMOTE_ATOMIC when
registering this memory.

user_cookie User-provided cookie that is returned to a consumer
at the completion of the operation

remote_iov I/O Vector specifying the remote buffer to which the
data shall be written. Memory privilege MUST be set
to DAT_IB_MEM_PRIV_REMOTE_ATOMIC when
registering this memory.

completion_flags Flags for posted operation. The default
DAT_COMPLETION_DEFAULT_FLAG is 0 (see Dat
2.0 specification, Appendix A.4 for definitions.

Compare and Swap DTO Flag Definitions

Features Definition/Bit Value Description Caveat
 0x00 Generate Completion Completion

Suppression DAT_COMPLETION_
SUPPRESS_FLAG

0x01 Suppress successful
Completion

 0x00 Notification Completion Notification of
Completion

DAT_COMPLETION_
UNSIGNALLED_
FLAG

0x04 Non-notification
Completion

Local Endpoint
must be
configured for
Notification
Suppression.

 2-19

 0x00 No request for RDMA
Read Barrier Fence

Barrier Fence

DAT_COMPLETION_
BARRIER_FENCE_
FLAG

0x08 Request for RDMA
Read and Atomic Barrier
Fence

Description:

This call is modeled after the InfiniBand atomic Fetch and Add operation. The add_value is
added to the 64 bit value stored at the remote memory location specified in remote_iov. The
original pre-added 64 bit value stored in the remote memory location is copied to the local_iov.
All operations on the responder’s HA memory is done in the native endian format of that memory
system. All operations on the requestor’s memory are done in the native endian format of the
requestor.

The local_iov and the remote_iov specifications should adhere to the rules defined in Appendix
A.4. The virtual address shall be naturally aligned to an 8 byte boundary.

Providers shall not allow Consumers ownership of the local_iov or its memory after the
dat_ib_post_fetch_and_add returns. A Consumer shall not read or modify the local_iov or its
content until the DTO is completed.

The DAT_SUCCESS return of the dat_ib_post_fetch_and_add is at least the equivalent of
posting an atomic operation directly by native Transport. Providers shall avoid resource
allocation as part of dat_ib_post_fetch_and_add to ensure that this operation is nonblocking.

The completion of the posted dat_ib_post_fetch_and_add is reported to the Consumer
asynchronously through a DTO Completion event based on the specified completion_flags value.
The value of DAT_COMPLETION _ UNSIGNALLED_FLAG is only valid if the Endpoint
Request Completion Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_
INVALID_PARAMETER is returned.

The user_cookie allows Consumers to have unique identifiers for each DTO. These identifiers are
completely under user control and are opaque to the Provider. There is no requirement on the
Consumer that the value user_cookie should be unique for each DTO. The user_cookie is
returned to the Consumer in the Completion event for the posted dat_ib_post_fetch_and_add.

The operation is valid for the Endpoint in the DAT_EP_STATE_ CONNECTED and
DAT_EP_STATE_DISCONNECTED states. If the operation returns successfully for the Endpoint
in the DAT_EP_STATE_ DISCONNECTED state, the posted dat_ib_post_fetch_and_add is
immediately flushed to request_evd_handle.

If the reported status of the Completion DTO event corresponding to the posted
dat_ib_post_fetch_and_add DTO is DAT_DTO_SUCCESS, the add_value is added to the 64 bit
value stored at the remote memory location specified in remote_iov and stored in the same
remote_iov location. The original pre-added 64 bit value stored in the remote memory location is
copied to the local_iov.

DAPL Extension Design and API

 2-20

If the reported status of the Completion DTO event corresponding to the posted
dat_ib_post_fetch_and_add DTO is not DAT_DTO_SUCCESS, the contents of the memory
specified by IO vectors local_iov and the remote_iov are not defined.

dat_ib_post_fetch_and_add is asynchronous and non-blocking. Its thread safety is Provider-
dependent.

Event Type and Data:

Endpoint Event Number Extended DTOS Extended Event
Data Type

Initiator DAT_IB_DTO_EVENT DAT_IB_DTO_FETCH_AND_ADD n/a

Remote n/a n/a n/a

Return Codes:

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER
Invalid parameter; For example, one of the IOV

segments pointed to a memory outside its LMR, or the
number of IOVs specified exceeds EP capacity.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is invalid

DAT_INVALID_STATE
Endpoint was not in the DAT_EP_

STATE_CONNECTED or
DAT_EP_STATE_DISCONNECTED state

DAT_LENGTH_ERROR
The size of the receiving buffer was too small for sending
buffer data. The size of the remote buffer was too small

for the data of the local buffer.

DAT_PROTECTION_VIOLATION

remote memory access. Protection Zone mismatch
between either an LMR of one of the local_iov segments

and the local Endpoint or the rmr_context and the
remote Endpoint.

DAT_PRIVILEGES_VIOLATION

Privileges violation for local or remote memory access.
Either one of the LMRs used in local_iov was invalid or

did not have the local read privileges, or rmr_context did
not have the remote write privileges.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider.

 2-21

Usage:
The EP attributes max_rdma_read_out and max_rdma_read_in include both outstanding RDMA
Read and IB atomic operations support by the underlying Transport.

If connection was established without outstanding RDMA Read/Atomic attributes matching on
Endpoints on both sides (outstanding RDMA Read/Atomic outgoing on one end is larger than the
outstanding RDMA Read/Atomic incoming on the other end), connection is broken when the
number of incoming RDMA Read/Atomic exceeds the outstanding RDMA Read/Atomic
incoming attribute of the Endpoint.

The local and remote atomic buffer memory requires atomic memory privileges of
DAT_IB_MEM_PRIV_REMOTE_ATOMIC. Failure to set up local and remote buffer memory
privileges for these Providers will result in asynchronous DTO completion error and connection
being broken.

DAT does not guarantee any ordering between multiple RDMA Read/atomic DTO even over the
same connection to the same remote memory. The pipeline of RDMA Read/atomic DTOs over a
single connection can proceed simultaneously. Thus, if they access the same remote memory the
result of the remote buffer is indeterminate. Consumer can control RDMA Read/atomic ordering
with respect to other RDMA Reads or Writes or Sends or Atomics via
DAT_COMPLETION_BARRIER_FENCE_FLAG.

Rationale:
Model Implications:
The number of posted RDMA Read/atomic operations on Send WQ can exceed
max_rdma_read_out attribute of the EP. DAT Provider ensures that the number of outstanding
atomic operations on the remote endpoint of the connection does not exceed the EP attribute.
Consumer should rely on its own atomic operation flow control to ensure that the number of
atomic operations for which completions have not been generated does not exceed the EP
max_rdma_read_out attribute value.

While Provider does guarantee flow control for RDMA Read/atomic DTOs (the maximum
number of RDMA Reads/atomics reaching the remote host simultaneously over a single
connection), Consumer should avoid posting more than max_rdma_read_out RDMA Read/atomic
operations to the connection. Since all DTOs posted to the Send WQ of the EP are processed in
order, inability to process an RDMA Read/Atomic that exceeds max_rdma_read_out will stall
processing of all other DTOs of the Send WQ of the EP. This is irrespective of the Consumer
specification of DAT_COMPLETION_BARRIER_FENCE_FLAG value that is Consumer
requested stalling of the Send WQ processing.

	1. Data Structures and Types
	1.1 IA specific attributes
	1.2 Definitions (dat_ib_extensions.h)
	1.2.1 DAT_IB_EVENT_NUMBER
	1.2.2 DAT_IB_OP
	1.2.3 DAT_IB_EXT_TYPE
	1.2.4 DAT_IB_STATUS
	1.2.5 DAT_IB_RETURN
	1.2.6 DAT_IB_DTOS
	1.2.7 DAT_IB_HANDLE_TYPE
	1.2.8 DAT_IB_EVD_EXTENSION_FLAGS
	1.2.9 DAT_IB_MEM_PRIV_FLAGS
	1.2.10 DAT_IB_IMMED_DATA
	1.2.11 DAT_IB_EXTENSION_EVENT_DATA

	2. APIs
	2.1 RDMA write with immediate data
	2.1.1 Consumer Requirement
	2.1.2 Transport Neutral Alternatives
	2.1.3 Transport Requirements
	2.1.4 Function Call

	2.2 Atomic Operations
	2.2.1 Consumer Requirement
	2.2.2 Transport Neutral Alternatives
	2.2.3 Transport Requirements
	2.2.4 Atomicity Guarantees
	2.2.5 Function Calls
	2.2.5.1 dat_ib_post_cmp_and_swap()
	2.2.5.2 dat_ib_post_fetch_and_add()

