EXS and RoEE from UNH-IOL

Based in part upon Dr. Robert Russell's slides Presenter: Mikkel Hagen

www.openfabrics.org

Outline

- InterOperability Laboratory (IOL)
- Extended Sockets API (EXS-API)
- EXS in user space
- Mapping EXS onto RDMA
- > Performance
- RDMA over Enhanced Ethernet (RoEE)

UNH-IOL

Neutral 3rd party testing

Hosts the OFA-IWG interoperability cluster

- ~30 hosts, with targets and switches from many different vendors
- Both iWARP and IB

Maintains the OFW-IWG Logo List

Related testing through:

 iWARP, 10Gig, IB/10G Cable Testing and Data Center Bridging Consortia

Extended Sockets (EXS-API)

- Published by the Open Group
- Extensions to "standard" sockets
- >Two major new features:
 - Memory Registration for "zero-copy" I/O
 - Event-based Asynchronous I/O
- Useful for high-level access to RDMA

IOL EXS Stack for OFA

user space	Application Program
	IOL EXS Library
	OFED user library
kernel space	OFED kernel modules
	IWARP / IB Driver
hardware	iWARP RNIC / IB HCA
	Cable

IOL EXS

- Runs entirely in user space
- Utilizes OFED library to access RDMA
- Requires no change to OFED or Linux
- Extends Open Group ES-API specifications
 - ES-API designed to run in kernel
 - ES-API requires modifications to existing socket functions

EXS Programming

Two major differences from "normal" sockets

- Memory registration
 - To lock memory regions for "zero-copy" I/O
- Event queues
 - To determine asynchronous I/O completion

Memory Registration

>exs_mregister()

- Registers a region of user virtual memory for "zero-copy" I/O
- >exs_mderegister()
 - Unregisters previously registered memory region
- Memory regions are used in I/O operations
 - exs_send()
 - exs_recv()

Event Queues

>exs_qcreate()

- Creates a new queue object
- >exs_qdelete()
 - Deletes an existing queue object
- >exs_qdequeue()
 - Blocks until event is posted to queue object
- Event posted to a queue when an I/O completes

Parameters to exs_send()

- Socket file descriptor normal
- Buffer containing data to send normal
- Number of bytes of data to send normal
- Flags normal
- Event queue for posting completion event new
- User-defined request identification new
- Registered memory region for data buffer new

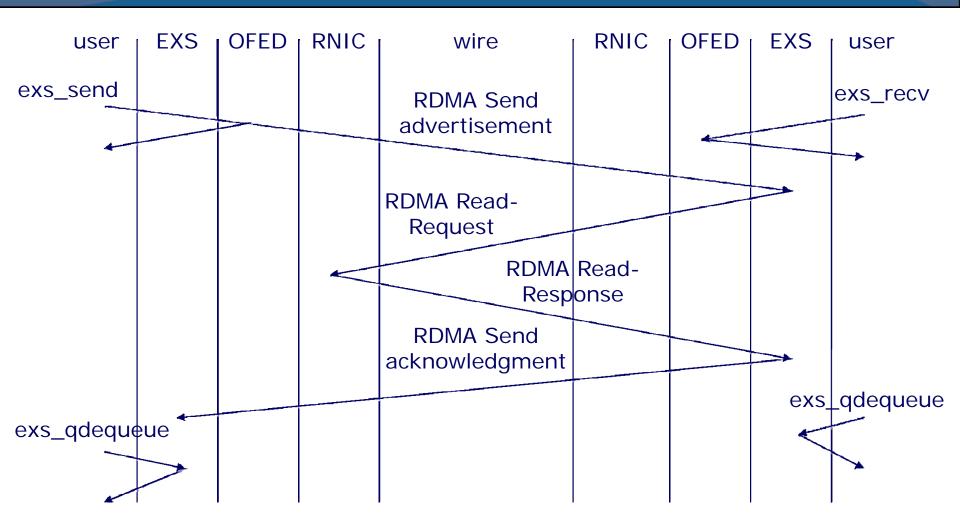
Parameters to exs_recv()

- Socket file descriptor normal
- Buffer into which data is received normal
- Max number of bytes of data to read normal
- Flags normal
- Event queue for posting completion event new
- User-defined request identification new
- Registered memory region for data buffer new

Other EXS functions

> exs_init()

- > exs_fcntl() IOL Extension
- > exs_socket() IOL Extension
- > exs_bind() IOL Extension
- > exs_listen() IOL Extension
- > exs_connect()
- > exs_accept()
- > exs_close() IOL Extension


Mapping IOL-EXS onto RDMA

- Transfer controlled by recipient of data
- exs_send() translates into RDMA "send" to advertise sender's data buffer to receiver
- exs_recv() sets up asynchronous wait for advertisement, then issues RDMA "read_request" to asynchronously transfer data directly from sender's memory into receiver's memory
- Asynchronous completion of transfer translates into short RDMA "send" of ACK back to sender

Typical EXS Data Transfer

IOL EXS Internal Flow Control

- Each side maintains local "send credit" value
- Initial credits negotiated when connection established
- >exs_send() decrements local "send credit" by 1, blocks if none remaining
- Receipt of ACK increments local "send credit" by 1, unblocks any waiting

IOL-EXS Small Packets

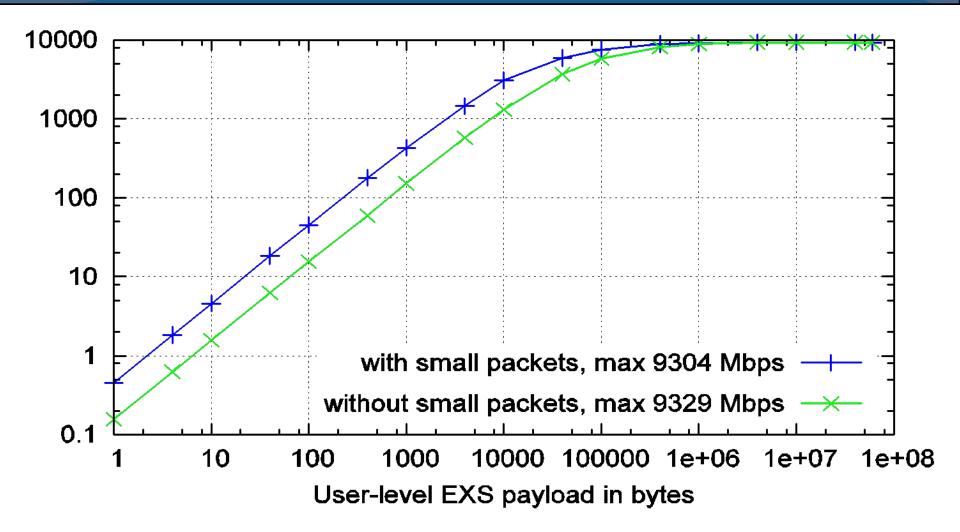
- Size limit configured by user with exs_fcntl() prior to connection establishment
- Causes "small" amounts of data in exs_send() to travel as "immediate data" in the advertisement
- Saves extra RDMA "read_request" / "read_response" exchange (hidden from user)
- Costs extra data copy on receiver when data advertisement is matched with exs_recv()

Initial Performance Measurements

Platform configuration

- 4 64-bit Intel 2.66 GHz processors
- 4 Gigabytes memory
- I NetEffect (Intel) 10 Gigabit/second RNIC

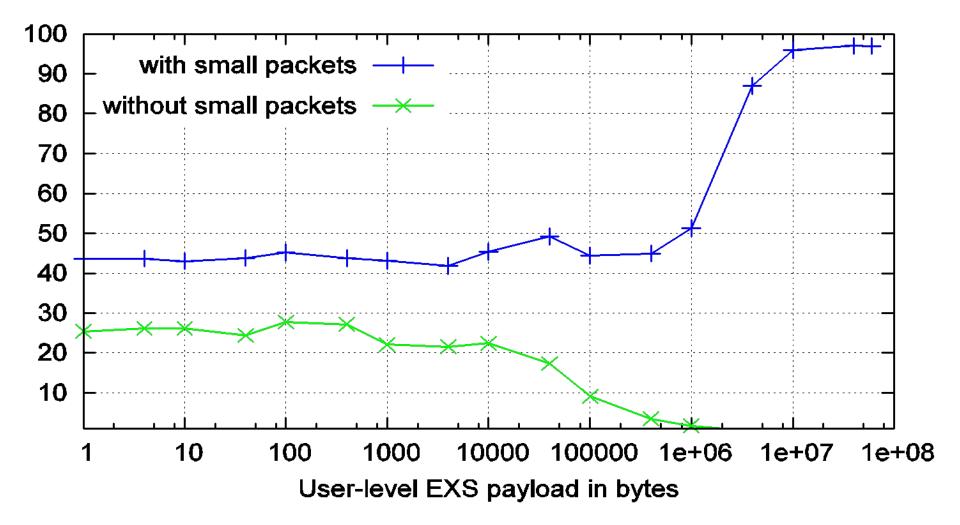
>Test


"blasting" data from one workstation to other

Metrics measured

- User-level throughput in Megabits/second
- CPU utilization as a percentage of 1 CPU

Bandwidth Utilization


- Standard Ethernet Frame 1538 bytes
 - Ethernet gap, preamble, header and CRC 38 bytes
 - IP and TCP headers 40 bytes
 - MPA, DDP, RDMAP headers and MPA CRC 20 bytes
- > Available user payload data
- Percentage available for data
- Percentage actually utilized

1440 bytes 93.63%

93.29%

Percent CPU Utilization

EXS Conclusions

Application programs using EXS can attain

- High bandwidth utilization
- Low CPU overhead
- Application programs using EXS can tune their performance

Programmers don't need to learn verbs in order to make use of RDMA technology

EXS Future Work

- Compare various RNIC hardware
- Compare standard and jumbo Ethernet frames
- Compare EXS over IB and iWARP
- Compare various applications
- Look at multiple outstanding transmissions
- Look at multiple simultaneous connections

RoEE

- With the introduction of Data Center Bridging standards into Ethernet, applications sensitive to loss can now be placed directly upon Ethernet such as Fibre Channel and RDMA
- DCB has four new technologies being introduced: PFC, ETS, CN, DCBX

Priority-based Flow Control (PFC)

- Introduces a new MAC Control Frame that extends existing PAUSE mechanism
- New frame has fields to define pause time for all eight defined priorities
- This allows end nodes to inhibit only the traffic classes that are over utilizing their fair share of bandwidth

Enhanced Transmission Selection (ETS)

- Adds another field, Priority Group ID (PGID), to frames
- Priorities are added to different groups and the bandwidth of the link is divided up between the groups.
- This allows network admins to provide minimum QoS bandwidth requirements to different traffic classes
- Rate limiters on the transmitter maintains the BW allocations

Congestion Notification (CN)

- >Adds another field, FlowID, to frames
- Provides end-to-end flow control
- PFC causes back pressure congestion cascades that can pull in nodes and flows not directly involved in the congestion
- CN allows devices to limit congestion proactively and hopefully prevent this phenomenon

DCB Exchange (DCBX)

- Allows end nodes to communicate configuration and even actively configure each other
- Designed to provide a means of identifying config problems and limited means of fixing them

DCB and UNH-IOL

- UNH-IOL is currently testing all of the above technologies in the new Data Center Bridging Consortium
- Future events are already planned with EA and FCIA to test DCB and FCoE (FC over DCB)
- Future events may also include Enterprise iSCSI (iSCSI over DCB)
- First test plan is complete:
 - http://www.iol.unh.edu/services/testing/dcb/testsuites.php

RoEE and UNH-IOL

- UNH-IOL has over 20 years of experience working with standards bodies including IEEE, IETF, ISO, ITU, etc.
- UNH-IOL has worked with RDMA technologies including iWARP, IB and OFA for several years – testing, documenting and developing applications
- UNH-IOL has worked on DCB from the beginning and will lead the way with testing and developing this new technology
- UNH-IOL is uniquely qualified with experience in all areas touching RoEE

Contacts

Mikkel Hagen

- Research and Development
- Phone: 1 (603) 862 5083
- Email: <u>mhagen@iol.unh.edu</u>

Bob Noseworthy

- Chief Engineer
- Phone: 1 (603) 862 0090
- Email: ren@iol.unh.edu

Website: <u>http://www.iol.unh.edu</u>