
Direct

Storage-class Memory

Access
Using a High-Performance Networking
Stack to integrate Storage Class Memory
Bernard Metzler, Blake G. Fitch, Lars Schneidenbach

IBM Research

Outline

• DSA: What is it for?

• DSA Design: Unified OFA based I/O Stack

• DSA Prototype

• Example applications

• Summary & Outlook

March 30 – April 2, 2014 #OFADevWorkshop 2

Tackling a changing Storage

Landscape

March 30 – April 2, 2014 #OFADevWorkshop 3

• New persistent memory technologies

– From Tape to Disc to Flash to

– PCM, Spin/Torque, ReRAM, …

• Changing storage IO

– From IDE/SCSI to SATA/SAS to PCI…

– …towards IO elimination

• Direct Storage Access architecture:

– Low level, application private storage
interface

– Can be integrated with

• RDMA network stack, and

• Legacy host storage stack

– Rich semantics: Read, Write, Atomics

– Ready for future storage technologies

R
an

d
o

m
 a

cc
es

s
d

el
ay

100us

10000us

10us

0.1us

Integrating Storage-class

Memory

March 30 – April 2, 2014 #OFADevWorkshop 4

Internal

CPU MMU DRAM

SCM

IO
Controller SCM

External

Storage
Controller

SCM

Disk

• M-type: Synchronous
• Hardware managed
• Low overhead
• CPU waits
• New NVM tech. (not flash)
• Cached or pooled memory
• Persistence requires

redundancy

• S-Type: Asynchronous
• Software managed
• High overhead
• CPU doesn’t wait
• Flash or new NVM
• Paging or storage
• Persistence: RAID

http://researcher.watson.ibm.com/researcher/files/us-gwburr/Almaden_SCM_overview_Jan2013.pdf

o
p

ti
o

n
a

l

n
e
tw

o
rk

 a
c
c
e
s
s

Goal: Define standard low level, highly efficient, potentially application private SCM
Interface covering ALL types of SCM

Traditional Storage I/O Stack:

Bad fit for SCM

March 30 – April 2, 2014 #OFADevWorkshop 5

• BIO: enable efficient sequential disc access

– Heavy CPU involvement

– Single synchronization point for

device access

• partially relaxed with MQ BIO

• Inefficient SCM access

– Precludes parallelism

• NVMe + MQ BIO to improve here

– Enforces block based device access

not needed for future SCM technology

Direct Application Storage I/O

March 30 – April 2, 2014 #OFADevWorkshop 6

• Trusted application-device channel

• Asynchronous operation
– Deep request and completion queue(s)

– High level of access parallelism

• Efficient IO path
– CPU affinity, NUMA awareness

– Can be lock free

– Benefits from potential HW assists

– Ready for efficient I/O stack virtualization

• Serves as base/primary SCM interface
– Access granularity: [address, length]

– Optional block layer integration

• Higher level storage systems as first level citizens
– File-systems, databases, object stores, …

– Translation of objects to I/O device address range

– File, database column, key/value item, …

Storage Abstraction

device
driver

userlib userlib userlib

device
driver

Block
layer

application private device channel

Application Application Application

File System

operating system

Byte addressable SCM

March 30 – April 2, 2014 #OFADevWorkshop 7

• Make a single interface change for Flash and Future SCM

• Lowest level of access abstraction
• System I/O view: [PA, len]: NVM access above FTL

• Application view: [VA, len]: most concrete object representation

• [VA, len] to be mapped to
[key, offset, len] for access

• Advantages
• Efficient data I/O

• Direct object reference

• Higher levels of abstraction
if needed

• Future SCM technology proof

• Examples:
• Byte addressable object store

• Traversing nodes of terabyte graph, random pointer chasing

• Terabyte Sorting

DSA: An OFED based Prototype

March 30 – April 2, 2014 #OFADevWorkshop 8

I/O

OS

Application

HAL

dsa

OFA Core

libdsa

libibverbs

ESP

registered buffer

device
management

Doorbell syscall,
mapped QP/CQ

0copy
I/O operation

HW control
PCI

Flash card

registered NVM

• Prototype PCI attached flash adapter

• ‘dsa’ OFED verbs provider and ‘libdsa’

• User mapped kernel QP/CQ

• Proprietary DB syscall (or HW capability)

• Hardware Adaptation Layer (HAL)

• DSA application operation:

– Open dsa OFED device, create PD

– Register local target buffers (ibv_reg_mr())

– Create QP and move it to RTS/connect to
‘embedded storage peer’ (ESP)

– Post Receive's + Send's executing RPC’s to
ESP to learn partition parameters, register I/O
memory and associated RTag's

• Post READ/WRITE to read/write IO
memory into/from local registered buffer

• Atomic operations on flash TBD/next step

HS4: Prototype hybrid SCM Device

• Hybrid Scalable Solid State
Storage Device
– PCIe 2.0 x 8

– 2 x 10Gb Ethernet

– 2 TB SLC (raw)

– 8 GB DRAM

– FPGA ties it all together

• Software Stack
– Kernel module interface fits

with DSA-HAL

– SW based GC, FTL

– Single PCI request/response
queue

March 30 – April 2, 2014 #OFADevWorkshop 9

Blue Gene/Q integrated processors,

memory and networking logic.

Prototype deployment

HS4 Device

Application Level Performance

March 30 – April 2, 2014 #OFADevWorkshop 10 March 30 – April 2, 2014 #OFADevWorkshop 10

• Systems:
• BlueGene/Q system, 1.6 GHz A2

• P7+ system, 3.6 GHz

• Prototype
• Single Core Write path performance

• Working on CPU affinity,
NUMA awareness, lockless

• Similar results using Java/jVerbs research prototype

Flash Performance:

Single-Thread Best config Single-Thread Best config

DSA client BW (1MB) Write 1050 MB/s == 2340 MB/s ==

Read 1300 MB/s 2270 MB/s (2 procs) 3020 MB/s ==

IOPS (8k) Write 65k 91k (4 procs) 270k ==

Read 70k 180k (3 procs) 360k ==

Latency (8k) Write 490µs == 440µs ==

Read 165µs == 101µs ==

VBD (dd) BW (1MB) Write 835 MB/s 992 MB/s (2 procs) 1300 MB/s 2200 MB/s (2 procs)

Read 1200 MB/s 2100 MB/s 3000 MB/s ==

BG/Q P7+

DSA Hybrid Memory Access (DRAM/MRAM)

BG/Q P7+ Comment

IOPS DRAM Write 120k 635k 32byte, single thread

230k 32byte, 2 threads

340k 32byte, 3 threads

Read 120k 740k 32byte, single thread

235k 920k 32byte, 2 threads

340k 1050k 32byte, 3 threads

Latency DRAM Write 70µs 11.5µs

Read 70µs 10.4µs

Example Block Layer

Integration

March 30 – April 2, 2014 #OFADevWorkshop 11

• DSA block driver

• Attaches to OFA core as a
kernel level client

• Reads/Writes blocks

• Blocking/non blocking
operations

• High parallelism possible
(multi-QP)
• Currently 2 QP’s

• BIO-MQ interface considered

• Prototyped
• File system on Flash partition

• Transparent GPFS/Flash
integration on BG/Q

I/O

OS

 Application

HAL

dsa

OFA Core

libdsa

libibverbs

ESP

registered buffer

Doorbell syscall,
mapped QP/CQ

0copy
I/O operation

HW control

file buffer

Flash card

registered NVM

Linux FS

dsa block
driver

device
management

Block Layer Performance

March 30 – April 2, 2014 #OFADevWorkshop 12

• BlueGene/Q system
– 1.6 GHz A2, 8..64 IO Nodes, 3 Dim

Torus,1 HS4 card each

• Raw ‘dd’ I/O
– DSA block driver

– Read, Write

• Experimental GPFS/IOR Performance
– 2 IOR processes per node,

– Read ~about 2 x Write

– POSIX and MPIO with
similar results

Flash Performance:

Single-Thread Best config Single-Thread Best config

DSA client BW (1MB) Write 1050 MB/s == 2340 MB/s ==

Read 1300 MB/s 2270 MB/s (2 procs) 3020 MB/s ==

IOPS (8k) Write 65k 91k (4 procs) 270k ==

Read 70k 180k (3 procs) 360k ==

Latency (8k) Write 490µs == 440µs ==

Read 165µs == 101µs ==

VBD (dd) BW (1MB) Write 920 MB/s 992 MB/s (2 procs) 1300 MB/s 2200 MB/s (2 procs)

Read 1200 MB/s 2100 MB/s 3000 MB/s ==

BG/Q P7+

0

500

1000

1500

2000

2500

IOR Transfer Size[KiB]

IO
R

 B
an

d
w

id
th

 p
er

 N
o

d
e

[M
iB

/s
]

IOR Bandwidth

16MiB read

16MiB write

4MiB read

4MiB write

1MiB read

1MiB write

DSA and Networking

• Legacy Block Layer implies
– Block storage access, which implies

– Block exchange protocols for networked storage
access: iSCSI, iSER, FCoE, FCoIP, NFS, …

• Further I/O consolidation possible
– Tag, offset, length @ network address

– There is no extra protocol (just IB, iWarp, RoCEE)

– Explicit control over data locality (just IP address)

• Block layer remains optional upper layer
abstraction, but
– No block exchange protocol needed

March 30 – April 2, 2014 #OFADevWorkshop 13

Current and future DSA Usage

March 30 – April 2, 2014 #OFADevWorkshop 14

• BlueBrain & HumanBrain
projects

– BlueGene/Q systems running
Linux

– Equipped with HS4 NVM cards
in I/O drawers

• RDFS: IBM Zurich Lab effort
for HDFS compatible file
system

– Completely RDMA based

– Java RDMA I/O via ‘jVerbs’
(zero copy I/O)

– In-memory file system

– To be integrated with DSA for
local and networked storage
access

DSA Code Status

• All core components implemented
• Architecture proposed at FAST’14

Linux Summit
• Encouraging feedback - community

interested

• dsa, libdsa, HAL to be open sourced
soon

• dsa block driver too

• github, gitorious, … to start with

• Next steps:
• Integration with off-the-shelf available

NVM interfaces: NVMe

• Para-virtualization support

• SoftiWarp based kernel client for
simple remote access

• Proposed as an OpenFabrics
RDMA verbs provider

March 30 – April 2, 2014 #OFADevWorkshop 15

I/O

OS

 Application

HAL

dsa

OFA Core

libdsa

libibverbs

registered buffer

Doorbell syscall,
mapped QP/CQ

0copy
I/O operation

HW control

file buffer

Flash card

registered NVM

Linux FS

dsa block
driver

device
management

Summary

• Direct Storage-class Memory Access
 Generic low-level all type SCM access

 Application-private trusted device access

 Rich semantics: Read, Write, Atomics @ addr, len

 Legacy storage stack integration via block layer

 Simplified
 Storage/networking integration

 High performance virtualization

• Proposed as an OpenFabrics RDMA verbs provider
 Seamless OpenFabrics integration

 Open source announcement soon

• Further reading
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas-BoF/bgas-BoF-fitch.pdf?__blob=publicationFile

http://www.adms-conf.org/2013/BGAS_Overview_Fitch_VLDB_ADMS.pdf

https://www.openfabrics.org/images/docs/2013_Dev_Workshop/Wed_0424/2013_Workshop_Wed_0930_MetzlerOFA_IOAPI.pdf

March 30 – April 2, 2014 #OFADevWorkshop 16

http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas-BoF/bgas-BoF-fitch.pdf?__blob=publicationFile
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas-BoF/bgas-BoF-fitch.pdf?__blob=publicationFile
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas-BoF/bgas-BoF-fitch.pdf?__blob=publicationFile
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas-BoF/bgas-BoF-fitch.pdf?__blob=publicationFile
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas-BoF/bgas-BoF-fitch.pdf?__blob=publicationFile
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas-BoF/bgas-BoF-fitch.pdf?__blob=publicationFile
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas-BoF/bgas-BoF-fitch.pdf?__blob=publicationFile
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas-BoF/bgas-BoF-fitch.pdf?__blob=publicationFile
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas-BoF/bgas-BoF-fitch.pdf?__blob=publicationFile
http://www.adms-conf.org/2013/BGAS_Overview_Fitch_VLDB_ADMS.pdf
http://www.adms-conf.org/2013/BGAS_Overview_Fitch_VLDB_ADMS.pdf
http://www.adms-conf.org/2013/BGAS_Overview_Fitch_VLDB_ADMS.pdf
https://www.openfabrics.org/images/docs/2013_Dev_Workshop/Wed_0424/2013_Workshop_Wed_0930_MetzlerOFA_IOAPI.pdf

#OFADevWorkshop

Thank You

