
SHMEM/PGAS Developer

Community Feedback for OFI

Working Group

#OFADevWorkshop

Howard Pritchard, Cray Inc.

Outline

• Brief SHMEM and PGAS intro

• Feedback from developers concerning API

requirements

– Endpoint considerations

– Memory registration

– Remote memory references

– Collectives

– Active messages

• On going work

2 March 30 – April 2, 2014 #OFADevWorkshop

(Open)SHMEM

3

symmetric

heap

PE 0 1 2 NPES - 1

Data segments

• Library based one-sided program model

• All ranks (PEs) in the job run the same program (SPMD)

• Only objects in symmetric regions – data segment(s),

symmetric heap – are guaranteed to be remotely accessible

• Various vendor specific variations/extensions

• Somewhat archaic interface (think Cray T3D), being

modernized as part of OpenSHMEM effort

v
a

d
d

r
s
p

a
c
e

March 30 – April 2, 2014 #OFADevWorkshop

UPC

4

• Compiler based program model – ‘c’ with extensions

• Each thread has affinity to a certain chunk of shared

memory

• Objects declared as shared are allocated out of shared

memory

• Objects can be distributed across the chunks of shared

memory in various ways – blocked, round robin, etc.

• Collective operations, locks, etc.

• Like MPI, evolving over time

• Thread may map to SHMEM PE rank enumeration

Thread 0 2 THREADS - 1

v
a

d
d

r
s
p

a
c
e

1

shared address space

private address space

x[T*3]

x[(T*3)+1]

x[(T*3)+2]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[8]

x[(T-1)*3]

x[(T-1)*3+1]

x[(T-1)*3+2]

shared [3] int x[(T*3)+3]

where

T = THREADS

Example for array X as declared

below:

March 30 – April 2, 2014 #OFADevWorkshop

Fortran 2008 (CoArrays or CAF)

5

• Also compiler based one-sided program model

• CoArray construct part of Fortran 2008 standard

• Like SHMEM, currently supports only SPMD model

• Address space model closer to SHMEM than UPC

• But there is a significant complication with Fortran 2008 (and

likely in future versions of UPC). Basically with Fortran 2008 not

a clean separation between "shared" and "private" address

spaces.

March 30 – April 2, 2014 #OFADevWorkshop

Community Feedback

6 March 30 – April 2, 2014 #OFADevWorkshop

SHMEM/PGAS API Requirements

– caveats and disclaimers

• Assume significant degree of overlap with needs of MPI community,

e.g.

– Similar needs with respect to supporting fork

– Similar needs concerning munmap if memory

registration/deregistration needs to be managed explicitly by the

SHMEM/PGAS runtime

• What are covered here are API requirements more particular to

SHMEM/PGAS and similar one-sided program models

• As with MPI there are differences of opinion how best to implement

runtimes to support these program models – some preferring active

message style models, possibly with some RDMA offload – while

others prefer a more direct-on-top-of-rdma primitives approach

7 March 30 – April 2, 2014 #OFADevWorkshop

API Endpoint Considerations

• Endpoint memory usage needs to be scalable

• Low overhead mechanism for enumeration of endpoints, i.e. "ranks"

rather than lids, etc.

• It would be great to have connectionless (yet reliable)-style

endpoints

• If connected-style endpoints are the only choice, methods to do both

on-demand and full-wire up efficiently would be great

• API that supports "thread hot" thread safety model for endpoints.

8 March 30 – April 2, 2014 #OFADevWorkshop

Memory Registration API

Requirements (1)

• Necessary evil?

– Some say yes if needed for good performance

• Scalability of memory registration is a very important property

– API should be designed to allow for cases where only local

memory registration info is required to access remote memory

– Does this lead to security issues? Have to have some protection

mechanism.

• An idea - let application supply “r_key” values to use

• Growable (both down and up) registrations would also be useful

(mmap example)

9 March 30 – April 2, 2014 #OFADevWorkshop

Memory Registration API

Requirements (2)

• On-demand paging option requirements

– Want flexibility to do on-demand paging when requested, but may also want

“pinned” pages method, specified by application

– PGAS compiler has to have control of memory allocation to avoid needing this –

but often compiler does have control of heap allocator, etc.

– Fortran 2008, possible future versions of UPC may still find this useful

– Maybe also be helpful for library based one-sided models, esp. if specifications

relax current restrictions on what memory is remotely accessible become more

relaxed

• Fortran 2008 (CoArray) in particular could benefit from ability to

register large amounts of virtual memory that may be only sparsely

populated

10 March 30 – April 2, 2014 #OFADevWorkshop

Small remote memory reference

API requirements – perf and ops

• PGAS compilers implemented directly on top of native RDMA

functionality need an API that can deliver high performance for small

non-blocking PUTs (stores) and GETs (loads). Typical remote

memory accesses much smaller than for MPI programs and many

more of them

• Atomic memory ops are important

• Put with various completion notification mechanisms – more on this

in a later slide

• Small partially blocking put requirement (till safe to reuse local

buffer)

– Shmem on top of portals4/non-blocking puts semantics example – cost of

implementing partially blocking on top of non-blocking?

11 March 30 – April 2, 2014 #OFADevWorkshop

Small remote memory reference

API requirements - ordering

PGAS compilers in particular have a special ordering requirement:

Need to be able to correctly handle WAW, WAR, and RAW from a given

initiator to a given target address:

12 March 30 – April 2, 2014 #OFADevWorkshop

Initiator A Target B

Initiator A Target B

Problem is one getting correctness while maintaining performance. If X

!= Y, then no need to order operations, only if X == Y is ordering

necessary. For Cray compiler, its been found for most PGAS apps X

!= Y is the far more common case.

addr X addr Y

Small remote memory reference API

requirements – Atomic memory ops

• Rich set of AMOs also useful – need more than FADD and CSWAP.

• Multi-element AMOs for active message support, etc.

• Nice to have AMOs that can support MCS lock algorithm at scale –

implies possibly needing 128 bit AMOs

• At least two kinds of AMO performance characteristics:

– Low latency but reliable (either fail or succeed, result being reported back to

initiator). This allows use of locks, queues, etc. without giving up on resilience to

transient network errors.

– “At memory” computation, but only need a good enough answer. Throughput

more important than reliability. Example is GUPS.

• 32/16 bit granularity ops would be useful in addition to 64 bit and

possibly 128 bit.

• AMO cache (on NIC) coherency issues - may need functionality in

any API for this.

13 March 30 – April 2, 2014 #OFADevWorkshop

Remote memory reference API

requirements – completion notification

• Lightweight completion notification is very desirable,
especially for PUTs.

– Put with flag (delivered at target after payload)

– Counter-like completion mechanism at target

– At initiator side want notification of local completion (safe to reuse
buffer), and global completion (safe to tell another process it can
access the data at the target node).

• Ideally allow for batching of groups of PUT/GET requests with
a single completion notification at the initiator.

• Get completion information at target of the get operation:

– Data in the get buffer has been read and heading over the wire, i.e.
target can reuse the buffer

– Data has arrived in initiator’s memory

14 March 30 – April 2, 2014 #OFADevWorkshop

Other Requests

• Option for fences between RDMA transactions – already

there?

• Per transfer network ordering options would be great

• For large RDMA writes - piggyback message data (more

than 32 bits of imm data) coming along with bulk data –

Gasnet request – handler invocation

15 March 30 – April 2, 2014 #OFADevWorkshop

Collectives

• Would be nice to not have to reinvent the wheel for

multiple, often concurrently used program models, e.g.

app using SHMEM and MPI

– A lower level common interface for frequently used collective

operations – barrier, reductions, coalesce (allgather), alltoall

– Flat would be better, not have to do special on-node (within a

cache coherent domain) operations within the SHMEM/PGAS

implementation

16 March 30 – April 2, 2014 #OFADevWorkshop

Active Message Support

• Two general types of uses

– Lower performance need for RPC-like capabilities implied by some types of
operations, e.g. upc_global_alloc

– Higher performance needed for PGAS languages implemented using an
Active Message paradigm, as well as other active message based program
models like Charm++

• API should support sending of requests to pre-initialized queues, for which the
target has registered callback functions to process the data sent from initiator.
Payload can be restricted to small size ~256 bytes or less.

• Initiator of message should get response back that message has arrived,
optionally that message has been consumed by callback function

• Implementation needs to be able to handle transient network errors, message is
delivered once and only once to target

• Some applications may require ordering of messages from a given initiator to
given target, would be good to be able to specify this at queue initialization.

• Flow control is important.

17 March 30 – April 2, 2014 #OFADevWorkshop

On Going Work

• Working with DOE Office of Science Co-design

teams to collect additional, future requirements

particularly for new program models like Legion.

• Soliciting focused input from Charm++, PAMI

end users, etc.

March 30 – April 2, 2014 #OFADevWorkshop 18

References

• http://openshmem.org/

• BM Parallel Environment Runtime Edition Version 1 Release 2:

PAMI Programming Guide (SA23-2273-03)

• Using the GNI and DMAPP APIs

• http://www.cs.sandia.gov/Portals/portals4-spec.html

• http://www.openfabrics.org/downloads/OFWG/

19 March 30 – April 2, 2014 #OFADevWorkshop

http://openshmem.org/
http://openshmem.org/
http://openshmem.org/
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA23-2273-03
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA23-2273-03
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA23-2273-03
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA23-2273-03
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA23-2273-03
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA23-2273-03
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA23-2273-03
http://docs.cray.com/books/S-2446-3103/S-2446-3103.pdf
http://www.cs.sandia.gov/Portals/portals4-spec.html
http://www.cs.sandia.gov/Portals/portals4-spec.html
http://www.cs.sandia.gov/Portals/portals4-spec.html
http://www.cs.sandia.gov/Portals/portals4-spec.html
http://www.openfabrics.org/downloads/OFWG/

#OFADevWorkshop

Thank You

This material was assembled with help

of the following organizations/people

Los Alamos National Lab
Latchesar Ionkov

Ginger Young

Oak Ridge National Lab
Steve Poole

Pavel Shamis

Sandia National Lab
Brian Barrett

Intel
David Addison

Charles Archer

Sayantan Sur

Mellanox
Liran Liss

Cray
Monika ten Bruggencate

Howard Pritchard (scribe)

Input was also obtained from Paul Hargrove (LBL) and Jeff Hammond (ANL), and others.

21 March 30 – April 2, 2014 #OFADevWorkshop

UPC/Fortran 2008(2)

22

 .

#include <upc.h>

 .

long *shared sh_ptr[THREADS];

long *my_mallocd_array = NULL;

long *thread_zeros_array = NULL;

if (MYTHREAD == 0) {

 my_mallocd_array = (long *)malloc(1000 * sizeof(long));

 sh_ptr[0] = my_mallocd_array;

}

upc_barrier(100);

if (MYTHREAD == 1) {

 thread_zeros_array = sh_ptr[0];

 for (int i=0;i<10;i++) thread_zeros_array[i] = 0xdeadbeef;

}

upc_barrier(101);

if (MYTHREAD == 0) {

 for (int i=0;i<10;i++) assert(my_mallocd_array[i] == 0xdeadbeef);

}

Array of shared pointers to

private long (likely preregistered

with NIC)

This is not currently a legal UPC code example, but Fortran 2008 equivalent is. Just did not want

to use Fortran for example.

private pointers to private long

Compiler translates this into an

underlying RDMA get(load),

including retrieval of mem reg

info, etc.

Compiler translates into RDMA put

March 30 – April 2, 2014 #OFADevWorkshop

Different Views of PGAS –

implementing and using

23

Active Message Based

Implementations

Pure (almost) one-

sided implementations

Productivity more important

than performance

Expect SHMEM, etc. to beat

MPI on performance

implementer viewpoints

user viewpoints

Want to use SHMEM, etc.

inside MPI app for performance

reasons

March 30 – April 2, 2014 #OFADevWorkshop

Backup Material

24 March 30 – April 2, 2014 #OFADevWorkshop

(Open)SHMEM - example

25

 .

 .

 .

#include <mpp/shmem.h>

long target_array[1000];

int main(int argc,char **argv)

{

 int i, my_pe, n_pes, r_neighbor, l_neighbor;

 int n_elems;

 long *source_array;

 shmem_init();

 n_elems = sizeof(target_array)/sizeof(long);

 my_pe = shmem_my_pe();

 n_pes = shmem_n_pes();

 r_neighbor = (my_pe + 1) % n_pes;

 l_neighbor = (my_pe + n_pes - 1) % n_pes;

 source_array = (long *)malloc(sizeof(long) * n_elems);

 for (i=0;i<n_elems;i++) source_array[i] = (long) my_pe;

 shmem_barrier_all();

 shmem_put64(target_array,source_array,1000,r_neighbor);

 shmem_barrier_all();

 for (i=0;i<n_elems;i++)

 if(target_array[i] != l_neighbor) printf("something's wrong\n");

 shmem_finalize();

 return(0);

}

symmetric address – array in

data segment

Barrier – process and memory

synchronization

vendor specific

March 30 – April 2, 2014 #OFADevWorkshop

UPC

26

• Compiler based program model – ‘c’ with extensions

• Each thread (PE in SHMEM model) has affinity to a certain

chunk of shared memory

• Objects declared as shared are allocated out of shared memory

• Objects can be distributed across the chunks of shared

memory in various ways – blocked, round robin, etc.

• Collective operations, locks, etc.

• Like MPI, evolving over time

March 30 – April 2, 2014 #OFADevWorkshop

Small remote memory reference API

requirements – AMO survey

27

Operation IBM BG/Q Cray XC Quadrics SHMEM IB

swap x x x -

comp & swap x x x x

masked swap x x (AFAX) x -

add x x x x

bitwise or x x - -

bitwise and x x - -

comp & or x - - -

comp & add x - - -

comp & or x - - -

comp & and x - - -

comp & xor x - - -

min - x - -

max - x - -

March 30 – April 2, 2014 #OFADevWorkshop

Small remote memory reference

API requirements - ordering

PGAS compilers in particular have a special ordering requirement:
Many PGAS compilers can benefit greatly from hardware which provides protection against

WAW, WAR, and RAW hazards for remote memory references from a given initiator to a given

target and address in the target’s address space.

28

 .

#include <upc_relaxed.h>

 .

void update_shared_array(shared long *g_array, long *local_data, int *g_idx, int nupdates)

{

 int i;

 for (i=0;i<nupdates;i++) {

 g_array[g_idx[i]] += local_data[i];

 }

 upc_barrier(0);

 if(MYTHREAD == 0) {

 printf(“Done with work\n”);

 }

}

app knows g_idx has no overlap

between different threads, but

possible repeat of indices for one

thread, so no need for locks, etc.

in update loop

Problem for compiler is here.

What if for some n,m it is the

case that g_idx[n] ==

g_idx[m]. See notes.

March 30 – April 2, 2014 #OFADevWorkshop

