
MPI Requirements  
of the Network Layer

Presented to the OpenFabrics libfabric Working Group	

January 28, 2014	

!
Community feedback assembled	

by Jeff Squyres, Cisco Systems	

Presented by	

Nathan Hjelm, Los Alamos National Laboratory

Slide

Many thanks to the contributors  
(in no particular order)

• ETZ Zurich	

• Torsten Hoefler	

• Sandia National Labs	

• Ron Brightwell	

• Brian Barrett	

• Ryan Grant	

• IBM	

• Chulho Kim	

• Carl Obert	

• Michael Blocksome	

• Perry Schmidt

• Cisco Systems	

• Jeff Squyres	

• Dave Goodell	

• Reese Faucette	

• Cesare Cantu	

• Upinder Malhi	

• Oak Ridge National Labs	

• Scott Atchley	

• Pavel Shamis	

• Argonne National Labs	

• Jeff Hammond

Slide

Many thanks to the contributors  
(in no particular order)

• Intel	

• Sayantan Sur	

• Charles Archer	

• Cray	

• Krishna Kandalla	

• Mellanox	

• Devendar Bureddy	

• SGI	

• Michael Raymond

• AMD	

• Brad Benton	

• Microsoft	

• Fab Tillier	

• U. Edinburgh / EPCC	

• Dan Holmes	

• U. Alabama Birmingham 	

• Tony Skjellum	

• Amin Hassani	

• Shane Farmer

Slide

• High-level abstraction API	

• No concept of a connection	

• All communication:	

• Is reliable	

• Has some ordering rules	

• Is comprised of typed messages	

• Peer address is (communicator, integer) tuple	

• I.e., virtualized	

• Specifies a process, not a server / network endpoint

Quick MPI overview

Slide

• Communication modes	

• Blocking and non-blocking (polled completion)	

• Point-to-point: two-sided and one-sided	

• Collective operations: broadcast, scatter, reduce, …etc.	

• …and others, but those are the big ones	

• Async. progression is required/strongly desired	

• Message buffers are provided by the application	

• They are not “special” (e.g., registered)

Quick MPI overview

Slide

• MPI specification	

• Governed by the MPI Forum standards body	

• Currently at MPI-3.0	

• MPI implementations	

• Software + hardware implementation of the spec	

• Some are open source, some are closed source	

• Generally don’t care about interoperability (e.g., wire

protocols)

Quick MPI overview

Slide

• Community feedback represents union of:	

• Different viewpoints	

• Different MPI implementations	

• Different hardware perspectives	

!

• …and not all agree with each other	

• For example…

MPI is a large community

Slide

• Do not want to see memory
registration	

• Want tag matching	

• E.g., PSM	

• Trust the network layer to do

everything well under the
covers

• Want to have good memory
registration infrastructure	

• Want direct access to
hardware capabilities	

• Want to fully implement MPI

interfaces themselves	

• Or, the MPI implementers are

the kernel / firmware /hardware
developers

Different MPI camps
Those who want	

high level interfaces
Those who want	

low level interfaces

Slide

Be careful what you ask for…

• …because you just got it	

!
• Members of the MPI Forum

would like to be involved in
the libfabric design on an
ongoing basis	

• Can we get an MPI libfabric
listserv?

Slide

• Messages (not streams)	

• Efficient API	

• Allow for low latency / high bandwidth	

• Low number of instructions in the critical path	

• Enable “zero copy”	

• Separation of local action initiation and completion	

• One-sided (including atomics and shared locks) and two-sided
semantics	

• No requirement for communication buffer alignment (!!!)

Basic things MPI needs

Slide

Basic things MPI needs

• Asynchronous progress
independent of API calls	

• Including asynchronous

progress from multiple
consumers (e.g., MPI and
PGAS in the same process)	

• Preferably via dedicated
hardware

Process	

!
!
!
!
!

MPI	

!
!

PGAS	

!
!libfabric

handles
libfabric
handles

Progress	

of these

Also causes	

progress	

of these

Slide

• Scalable communications with millions of peers	

• With both one-sided and two-sided semantics	

• Think of MPI as a fully-connected model	

(even though it usually isn’t implemented that way)	

• Today, runs with 3 million MPI processes in a job

Basic things MPI needs

Slide

• (all the basic needs from previous slide)	

• Different modes of communication	

• Reliable vs. unreliable	

• Scalable connectionless communications (i.e., UD)	

• Specify peer read/write address (i.e., RDMA)	

• RDMA write with immediate (*)	

• …but we want more (more on this later)

Things MPI likes in verbs

Slide

• Ability to re-use (short/inline) buffers immediately	

• Polling and OS-native/fd-based blocking QP modes	

• Discover devices, ports, and their capabilities (*)	

• …but let’s not tie this to a specific hardware model	

• Scatter / gather lists for sends	

• Atomic operations (*)	

• …but we want more (more on this later)

Things MPI likes in verbs

Slide

Things MPI likes in verbs

• Can have multiple consumers
in a single process	

• API handles are independent of

each other

Process	

!
!
!
!

Network hardware

Library A	

!
!

Library B	

!
!Handle

A
Handle

B

Slide

• Verbs does not:	

• Require collective initialization across multiple processes	

• Require peers to have the same process image	

• Restrict completion order vs. delivery order	

• Restrict source/target address region (stack, data, heap)	

• Require a specific wire protocol (*)	

• …but it does impose limitations, e.g., 40-byte GRH UD header

Things MPI likes in verbs

Slide

• Ability to connect to “unrelated” peers	

• Cannot access peer (memory) without permission	

• Ability to block while waiting for completion	

• ...assumedly without consuming host CPU cycles	

• Cleans up everything upon process termination	

• E.g., kernel and hardware resources are released

Things MPI likes in verbs

Slide

Other things MPI wants  
(described as verbs improvements)

• MTU is an int (not an enum)	

• Specify timeouts to connection requests	

• …or have a CM that completes connections

asynchronously	

• All operations need to be non-blocking, including:	

• Address handle creation	

• Communication setup / teardown	

• Memory registration / deregistration

Slide

Other things MPI wants  
(described as verbs improvements)

• Specify buffer/length as function parameters	

• Specified as struct requires extra memory accesses	

• …more on this later	

• Ability to query how many credits currently available in
a QP	

• To support actions that consume more than one credit	

• Remove concept of “queue pair”	

• Have standalone send channels and receive channels

Slide

Other things MPI wants  
(described as verbs improvements)

• Completion at target for an RDMA write	

• Have ability to query if loopback communication is
supported	

• Clearly delineate what functionality must be supported
vs. what is optional	

• Example: MPI provides (almost) the same functionality

everywhere, regardless of hardware / platform	

• Verbs functionality is wildly different for each provider

Slide

Other things MPI wants  
(described as verbs improvements)

• Better ability to determine causes of errors	

• In verbs:	

• Different providers have different (proprietary)

interpretations of various error codes	

• Difficult to find out why ibv_post_send() or ibv_poll_cq()

failed, for example	

• Perhaps a better strerr() type of functionality (that can
also obtain provider-specific strings)?

Slide

• Examples:	

• Tag matching	

• MPI non-blocking collective operations (TBD)	

• Remote atomic operations	

• …etc.	

• The MPI community wants input in the design of these

interfaces	

• Divided opinions from MPI community:	

• Providers must support these interfaces, even if emulated	

• Run-time query to see which interfaces are supported

Other things MPI wants: 
Standardized high-level interfaces

Slide

• Direct access to vendor-specific features	

• Lowest-common denominator API is not always enough	

• Allow all providers to extend all parts of the API	

• Implies:	

• Robust API to query what devices and providers are

available at run-time (and their various versions, etc.)	

• Compile-time conventions and protections to allow for safe

non-portable codes	

• This is a radical difference from verbs

Other things MPI wants: 
Vendor-specific interfaces

Slide

Core libfabric functionality

Application (e.g., MPI)

libfabric core

Provider
A

Provider
B

Direct function	

calls to libfabric

Slide

Example options for direct access to
vendor-specific functionality

Application (e.g., MPI)

libfabric core

Provider
A

Provider
B

Provider A
extensions

Example 1:	

Access to 	

provider A 	

extensions	

without going	

through libfabric	

core

Slide

Example options for direct access to
vendor-specific functionality

Application (e.g., MPI)

libfabric core

Provider
A

Provider
B with

extensions

Example 2:	

Access to provider B	

extensions via “pass	

through” functionality	

in libfabric

Slide

• Run-time query: is memory registration is necessary?	

• I.e., explicit or implicit memory registration	

• If explicit	

• Need robust notification of involuntary memory de-

registration (e.g., munmap)	

• If the cost of de/registration were “free”, much of this
debate would go away ☺

Other things MPI wants: 
Regarding memory registration

Slide

• In child:	

• All memory is accessible (no side effects)	

• Network handles are stale / unusable	

• Can re-initialize network API (i.e., get new handles)	

• In parent:	

• All memory is accessible	

• Network layer is still fully usable	

• Independent of child process effects

Other things MPI wants: 
Regarding fork() behavior

Slide

• If network header knowledge is required:	

• Provide a run-time query	

• Do not mandate a specific network header	

• E.g., incoming verbs datagrams require a GRH header	

• Request ordered vs. unordered delivery	

• Potentially by traffic type (e.g., send/receive vs. RDMA)	

• Completions on both sides of a remote write

Other things MPI wants

Slide

• Allow listeners to request a specific network address	

• Similar to TCP sockets asking for a specific port	

• Allow receiver providers to consume buffering directly
related to the size of incoming messages	

• Example: “slab” buffering schemes

Other things MPI wants

Slide

• Generic completion types. Example:	

• Aggregate completions	

• Vendor-specific events	

• Out-of-band messaging

Other things MPI wants

Slide

• Noncontiguous sends, receives, and RDMA opns.	

• Page size irrelevance	

• Send / receive from memory, regardless of page size	

• Access to underlying performance counters	

• For MPI implementers and MPI-3 “MPI_T” tools	

• Set / get network quality of service

Other things MPI wants

Slide

• Datatypes (minimum): int64_t, uint64_t, int32_t, uint32_t	

• Would be great: all C types (to include double complex)	

• Would be ok: all <stdint.h> types	

• Don’t require more than natural C alignment	

• Operations (minimum)	

• accumulate, fetch-and-accumulate, swap, compare-and-swap	

• Accumulate operators (minimum)	

• add, subtract, or, xor, and, min, max	

• Run-time query: are these atomics coherent with the host?	

• If support both, have ability to request one or the other

Other things MPI wants: 
More atomic operations

Slide

Other things MPI wants: 
MPI RMA requirements

• Offset-based communication (not address-based)	

• Performance improvement: potentially reduces cache

misses associated with offset-to-address lookup	

• Programmatic support to discover if VA based RMA
performs worse/better than offset based	

• Both models could be available in the API	

• But not required to be supported simultaneously	

• Aggregate completions for MPI Put/Get operations	

• Per endpoint	

• Per memory region

Slide

• Ability to specify remote keys when registering	

• Improves MPI collective memory window allocation

scalability	

• Ability to specify arbitrary-sized atomic ops	

• Run-time query supported size	

• Ability to specify/query ordering and ordering limits of
atomics	

• Ordering mode: rar, raw, war and waw	

• Example: “rar” – reads after reads are ordered

Other things MPI wants: 
MPI RMA requirements

Slide

“New,” but becoming important

• Network topology discovery and awareness	

• …but this is (somewhat) a New Thing	

• Not much commonality across MPI implementations	

• Would be nice to see some aspect of libfabric provide
fabric topology and other/meta information	

• Need read-only access for regular users

Slide

• With no tag matching, MPI frequently sends / receives
two buffers	

• (header + payload)	

• Optimize for that	

• MPI sometimes needs thread safety, sometimes not	

• May need both in a single process	

• Support for checkpoint/restart is desirable	

• Make it safe to close stale handles, reclaim resources

API design considerations

Slide

• Do not assume:	

• Max size of any transfer (e.g., inline)	

• The memory translation unit is in network hardware	

• All communication buffers are in main RAM	

• Onload / offload, but allow for both	

• API handles refer to unique hardware resources	

• Be “as reliable as sockets” (e.g., if a peer disappears)	

• Have well-defined failure semantics	

• Have ability to reclaim resources on failure

API design considerations

Slide

• Many different requirements	

• High-level, low-level, and vendor-specific interfaces	

• The MPI community would like to continue to
collaborate	

• Tag matching is well-understood, but agreeing on a

common set of interfaces for them will take work	

• Creating other high-level MPI-friendly interfaces (e.g., for

collectives) will take additional work

Conclusions

Thank you!

