
2013 OFA Developer
Workshop
Scaling with PGAS Languages Panel
Howard Pritchard
CRAY, Inc.

Cray UPC/CAF Compiler and
Network Stack

#OFADevWorkshop 2

DMAPP

libpgas

Compiler Front End

Compiler Back End

kGNI

NIC

user space

kernel

DMAPP Summary

• High level API for one-sided program models
– Optimized for fine grain RMA
– Hide changes in underlying HW from upper levels as much as

possible while not sacrificing performance

• Based loosely on concepts from Cray and
Quadrics SHMEM
– Blocking, nonblocking, nonblocking implicit RMA

• Uses explicit memory “descriptor” arguments
• Supports RMA read/write/atomic memory ops

#OFADevWorkshop 3

DMAPP – Memory Registration
(Dealing with the I/O MMU)
• Simple memory registration
• Symmetric memory registration (don’t need to do

explicit exchange of memory registration keys)
• Dynamic memory reservation

– Application “registers” a VM region, but its not really
registered at that point

– Use an “update” registration to fault in pages in region
when needed and register with NIC

– Option to use symmetrically
• DMAPP handles registration of “get” buffers

internally

#OFADevWorkshop 4

DMAPP – Other functionality

• Scalable message queue
– Intended for helping to support PGAS functionality where

“active message” support is useful
– Blocking/polling flavors

• Collectives
– Uses a “pset” construct similar to MPI groups
– Uses hw offload if available and operation can be

offloaded
• Thread hot (fine grain locking, multiple threads can

be using network concurrently)
• Hook functions for library interop, i.e. MPI makes

progress even in a DMAPP blocking call

#OFADevWorkshop 5

Thank You

#OFADevWorkshop

Backup Slides

#OFADevWorkshop 7

DMAPP – API example

#OFADevWorkshop 8

extern dmapp_return_t
dmapp_put_nb(IN void *target_addr,
 IN dmapp_seg_desc_t *target_seg,
 IN dmapp_pe_t target_pe,
 IN void *source_addr,
 IN uint64_t nelems,
 IN dmapp_type_t type,
 OUT dmapp_syncid_handle_t *syncid);

DMAPP – RMA functionality

• READ, WRITE
– Contiguous
– Strided, gather, scatter, rank/thread strided

• AMOS
– 32/64 bit integer ops (fadd, cswap, bitwise ops, etc.)
– 32/64 bit fp ops (add)

• Three synchronization types
– Blocking (doesn’t return till HW ack back from target)
– Non blocking explicit (handle returned which is used in

subsequent completion call)
– Non blocking implicit (a series of arbitrary rma ops can be

done followed by a dmapp_gsync_wait/test)

#OFADevWorkshop 9

kGNI odds and ends

• Uses pnotify fork functionality to avoid COW
problems with registered memory regions

• Provides ummunotify like functionality to keep
DMAPP internal memory registration cache from
getting in to trouble

#OFADevWorkshop 10

	2013 OFA Developer Workshop
	Cray UPC/CAF Compiler and Network Stack
	DMAPP Summary
	DMAPP – Memory Registration (Dealing with the I/O MMU)
	DMAPP – Other functionality
	Thank You
	Backup Slides
	DMAPP – API example
	DMAPP – RMA functionality
	kGNI odds and ends

