
User Mode Ethernet

Programming

OFA 2012

Author: Tzahi Oved
Date: March 2012

User Mode Ethernet – Why?

• Dramatically reduce operating systems
overhead

• Improve network performance utilizing NICs
support for user mode send/receive rings
– High PPS rates, low latency, low CPU utilization and

increased scalability

• Transparently use standard TCP/UDP/IP
protocols
– No need for proprietary protocol designs

– Use existing rich HW protocol offload support

– Can interoperate with traditional OS TCP/IP stack

User Mode Ethernet – How?

• Application needs:
– A direct HW Send Queue that send raw packets

– A direct Receive Queue that steers incoming flows

– No headers are generated implicitly (only explicitly)

– RX, TX completion queue

mmm… what can fit such requirements?

Hey! We’ve got Verbs

www.openfabrics.org 3

Raw QP

• QP Send queue to use

raw packets

• QP receive queue is

steered according to

flows

• Reuse the mature stack

of verbs: QP, CQ, mem

registrations ops

www.openfabrics.org 4

Application

RX Flow Steering RX Flow Steering

mlx_en mlx_en

TCP/IP Kernel TCP/IP Kernel
Stack

uVerbs uVerbs

mlx_ib mlx_ib

User Mode
Stack

User Mode
Stack

Ib_core Ib_core

Sockets Sockets

vSwitch vSwitch

NIC

U

K

RAW
“QP”

RAW
QP

Send/Recv Send/Recv
Ethernet
frames

Verbs

Mem regs

Verbs
objects:
QP, CQ,

Mem regs

N
e

ig
h

N

e
ig

h

IG
M

P

IG
M

P

QP as a User Mode Interface

• Receive flow based steering

• Port bonding and user mode LAG for HA & FO

• QoS

• Internal adapter switching
– For intra-node/loopback communication

– Built into adapter capabilities already

• Stateless offloads

• RSC and TSC

• Time stamping

• Completion interrupt moderation

www.openfabrics.org 5

Verbs Extensions

• The requirement
– Make verbs extendable without breaking the ABI

– Don’t make the API even more complicated

• Option 1
– Create new verb call: ibv_xxx_ex() for new operations

– Tomorrow, create ibv_xxx_ex2() for newer

• Option 2
– Use ABI Versioning

– ibv_xxx_ex() will always check ABI ID

– Verb call input parameters struct size is defined by ABI ID

– ABI ID can be set by ibv_open_device() or handed in each
xxx_ex() call

– ABI ID to include general version and vendor specific info

www.openfabrics.org 6

User Mode Stateless

Offloads

User Mode Stateless Offloads

• Capabilities
– Checksum offload

– Ethernet L2 header stripping and insertion
• Subset is VLAN (VID + Priority) striping and insertion

– Large Send Offload for TCP: HW segmentation

– Large Receive Offload for TCP: HW de-segmentation

• Verbs API
– ibv_query_device() to expose offload caps through ibv_device_attr-

>device_cap_flags

– For QP type = RAW (and UD) extend verbs create_qp:
• ibv_create_qp(ibv_pd*, ibv_qp_init_attr), where:

• ibv_qp_init_attr to include ibv_create_qp_flags

– ibv_create_qp_flags:
• L3, L4 TX and RX checksum create/verify offload

• VLAN: VID+Priority, whole L2* strip/insert

• Enable flow steering

• LSO, LRO*

*Not supported in current HW

User Mode Stateless Offloads

• Verbs API
– For VLAN and ETH* strip:

• ibv_wc to include: d.MAC, s.MAC, VLAN

– For VLAN, ETH insertion and LSO:
• ibv_send_wr to include new struct in wr union for RAW QP

• wr union
– struct rdma

– struct atomic

– struct ud

– struct raw // New

» ibv_ah // Points to d.MAC, s.MAC, VLAN (VID+prio)

» mss (for LSO, relevant if LSO is enabled)

– For RX csum
• ibv_wc to include: L3, L4 csum verification result

• Relevant when any rx csum is enabled

*Not supported in current HW

User Mode Receive and

Transmit Scaling

Receive and Transmit Scaling

• Use multiple receive and send rings for IO

operation

• Scale network handling with growing core count

• Apply NUMA locality of context and I/O operation

– Receive buffer is close (mem access wise) to

receiving context

TSC/RSC Model

• TSC/RSC parent
– Comprises TSC and RSC

QP groups

• TSC group
– A group of QPs with same

source address

• RSC group
– A group of QPs that are

the target of RSC hashing

• All QPs are manipulated
through regular Verbs

• Same model applies to
IPoIB as well

RSC Group TSC Group

TSC-

RSC

Parent

TSC

Child

#0

TSC

Child

#2

TSC

Child

#3

RSC

Child

#0

RSC

Child

#1

Verbs API

• Use ibv_create_qp() and ibv_destroy_qp() to
create/destroy parent and children QPs

• struct ibv_qp_init_attr to include:
– enum ibv_qpg_type // QP Group type

• IBV_QPG_NONE // Not a QP Group type

• IBV_QPG_PARENT // RSC and/or TSC Parent QP

• IBV_QPG_CHILD_RX // RSC child QP

• IBV_QPG_CHILD_TX // TSC child QP

– struct ibv_qpg_init_attrib // Valid for ibv_qpg_type=
IBV_QPG_PARENT, includes:

• TSC child count (TSC Vector size)

• RSC child count (RSC Vector size)

• struct ibv_qp ibv_qpg_parent: points to parent QP
// Valid for Ibv_qpg_type = IBV_QPG_CHILD_RX or IBV_QPG_CHILD_TX

• Only ibv_qp_type = RAW or UD are supported

Verbs API – cont.

• Enable QP Group parent characteristics

modification

• struct ibv_qp_attr to include:

– struct ibv_qpg_attrib for QP Group type attributes,

includes the following members:
– RSC Hash func type

– RSC Hash header fields selection: IPv4, IPv6, UDP, TCP

– RSC Key

– RSC indirection table update

• Where ibv_qp_attr_mask to indicate updated

type

Time Stamping

Completion Interrupt

Moderation

User mode Time Stamping

• Enable accurate user mode statistics and tracking

• Perform time stamp on transmit and receive events

• Expose OS bypass time stamping facilities

• Expose adapter HW clock directly to user mode

• Similar Verbs API can be used from kernel as well

– Kernel ULPs can use it too

• Can be used for:

– Application latency measurement

– Packet tracking/logging

– Other..

Verbs API

• Expose per CQ interrupt moderation

• Expose CQ time stamping for receive and transmit
completions

• Add (exists in kernel, but requires extension):
– ibv_modify_cq (ibv_cq*, ibv_cq_attr*, int attr_mask)

• ibv_cq_attr to include:
– enum ibv_ts_type // For Time stamping enablement and type

• Where enum ibv_ts_type:
– TS_TYPE_NONE // No TS for the CQ please

– TS_TYPE_RAW // Provide raw adapter free running clock

– TS_TYPE_TOD // Provide translated TS to Time Of Day

• ibv_poll_cq(ibv_cq*, num_entries, ibv_wc*)
– Where struct ibv_wc to include u64 time stamp value

• ibv_query_cq() // May be added to provide CQ characteristics

User Mode Interrupt

Moderation

User Mode Interrupt Moderation

• Today supported from kernel only

• Extend to user mode

• Verbs API

– ibv_modify_cq (ibv_cq*, ibv_cq_attr*, int attr_mask)

– Where ibv_cq_attr to include:

• count // number of CQEs to trigger an event

• period // max period in usec prior to triggering an event

• ibv_query_cq() // May be added to provide CQ

characteristics

 www.openfabrics.org 19

OS Bypass Sockets

Complete accelerated user mode stack

Complete OS Bypass

OS Bypass capable

NIC

OS Bypass capable

NIC

Application

User space

Kernel space

OS Socket Lib

TCP/IP

OS Bypass
Sockets

NIC Driver

Performance Numbers – TCP

Msg Size
[Bytes]

Latency [usec]

Bypass OS

12 1.625 7.352

32 1.638 7.325

64 1.716 7.593

128 1.876 7.706

192 2.270 7.736

256 2.248 8.006

512 2.549 8.221

768 2.837 8.411

1024 2.911 8.560

1460 3.228 8.961 0

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500

TCP Latency [usec]

VMA
6.0

OS

Bypass OS

MsgSize
[Bytes]

MsgRate
[mps]

BW
[Gbps]

MsgSize
[Bytes]

MsgRate
[mps]

BW
[Gbps]

12 4,676,836 428 12 636,043 58

32 5,577,214 1,362 32 723,038 177

64 5,194,631 2,536 64 691,814 338

128 4,657,394 4,548 128 661,711 646

192 4,464,682 6,540 192 606,785 889

256 3,851,569 7,523 256 718,902 1,404

512 2,742,317 10,712 512 642,647 2,510

768 2,109,650 12,361 768 609,287 3,570

1024 1,780,715 13,912 1024 677,960 5,297

1460 1,497,094 16,676 1460 642,576 7,158

Bypass

sockets

Performance Numbers – Multicast

Msg Size
[Bytes]

Latency [usec]

Bypass OS

12 1.339 6.262

32 1.373 6.263

64 1.392 6.538

128 1.479 6.583

192 1.859 6.649

256 2.012 7.073

512 2.213 7.269

768 2.477 7.419

1024 2.741 7.579

1460 2.901 7.826 0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000 1200 1400

Multicast Latency [usec]

VMA
6.0

OS

Bypass OS

MsgSize
[Bytes]

MsgRate
[mps]

BW
[Gbps]

MsgSize
[Bytes]

MsgRate
[mps]

BW
[Gbps]

12 3,583,267 328 12 1,121,512 103

32 3,581,469 874 32 1,060,979 259

64 3,247,848 1,586 64 1,081,166 528

128 3,064,820 2,993 128 1,080,604 1,055

192 3,114,609 4,562 192 1,075,363 1,575

256 3,136,012 6,125 256 1,075,704 2,101

512 2,151,377 8,404 512 1,059,383 4,138

768 2,155,998 12,633 768 983,353 5,762

1024 1,911,766 14,936 1024 973,862 7,608

1460 1,741,187 19,395 1460 987,417 10,999

Bypass

sockets

Application example: memcached

Summary

• User mode Ethernet is well suited for verbs API

• Reuse existing mature elements of verbs

• Capable of providing NIC standard and new

offloads

• But now each flow can have it dedicated “NIC”

• Ready for your next user mode stack

www.openfabrics.org 25

Thank You

