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User Mode Ethernet – Why? 

• Dramatically reduce operating systems 
overhead  

• Improve network performance utilizing NICs 
support for user mode send/receive rings 
– High PPS rates, low latency, low CPU utilization and 

increased scalability 

• Transparently use standard TCP/UDP/IP 
protocols 
– No need for proprietary protocol designs 

– Use existing rich HW protocol offload support 

– Can interoperate with traditional OS TCP/IP stack 

 



User Mode Ethernet – How? 

• Application needs: 
– A direct HW Send Queue that send raw packets 

– A direct Receive Queue that steers incoming flows 

– No headers are generated implicitly (only explicitly) 

– RX, TX completion queue 

 

 

mmm… what can fit such requirements? 

 

Hey! We’ve got Verbs 
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Raw QP 

• QP Send queue to use 

raw packets 

• QP receive queue is 

steered according to 

flows 

• Reuse the mature stack 

of verbs: QP, CQ, mem 

registrations ops 
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QP as a User Mode Interface  

• Receive flow based steering  

• Port bonding and user mode LAG for HA & FO 

• QoS 

• Internal adapter switching  
– For intra-node/loopback communication 

– Built into adapter capabilities already 

• Stateless offloads 

• RSC and TSC 

• Time stamping 

• Completion interrupt moderation 

www.openfabrics.org 5 



Verbs Extensions 

• The requirement 
– Make verbs extendable without breaking the ABI 

– Don’t make the API even more complicated 

• Option 1 
– Create new verb call: ibv_xxx_ex() for new operations 

– Tomorrow, create ibv_xxx_ex2() for newer 

• Option 2 
– Use ABI Versioning 

– ibv_xxx_ex() will always check ABI ID 

– Verb call input parameters struct size is defined by ABI ID  

– ABI ID can be set by ibv_open_device() or handed in each 
xxx_ex() call 

– ABI ID to include general version and vendor specific info 
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User Mode Stateless 

Offloads 



User Mode Stateless Offloads 

• Capabilities 
– Checksum offload 

– Ethernet L2 header stripping and insertion 
• Subset is VLAN (VID + Priority) striping and insertion 

– Large Send Offload for TCP: HW segmentation 

– Large Receive Offload for TCP: HW de-segmentation 

• Verbs API 
– ibv_query_device() to expose offload caps through ibv_device_attr-

>device_cap_flags 

– For QP type = RAW (and UD) extend verbs create_qp: 
• ibv_create_qp(ibv_pd*, ibv_qp_init_attr), where: 

• ibv_qp_init_attr to include ibv_create_qp_flags 

– ibv_create_qp_flags: 
• L3, L4 TX and RX checksum create/verify offload 

• VLAN: VID+Priority, whole L2* strip/insert 

• Enable flow steering 

• LSO, LRO* 

 
 

 

*Not supported in current HW 



User Mode Stateless Offloads 

• Verbs API 
– For VLAN and ETH* strip: 

• ibv_wc to include: d.MAC, s.MAC, VLAN 

– For VLAN, ETH insertion and LSO: 
• ibv_send_wr to include new struct in wr union for RAW QP 

• wr union 
– struct rdma 

– struct atomic 

– struct ud 

– struct raw  // New 

» ibv_ah // Points to d.MAC, s.MAC, VLAN (VID+prio) 

» mss (for LSO, relevant if LSO is enabled) 

– For RX csum 
• ibv_wc to include: L3, L4 csum verification result  

• Relevant when any rx csum is enabled 

 

 
*Not supported in current HW 



User Mode Receive and 

Transmit Scaling 



Receive and Transmit Scaling 

• Use multiple receive and send rings for IO 

operation 

• Scale network handling with growing core count 

• Apply NUMA locality of context and I/O operation 

– Receive buffer is close (mem access wise) to 

receiving context 

 



TSC/RSC Model 

• TSC/RSC parent 
– Comprises TSC and RSC 

QP groups 

• TSC group 
– A group of QPs with same 

source address 

• RSC group 
– A group of QPs that are 

the target of RSC hashing 

• All QPs are manipulated 
through regular Verbs 

• Same model applies to 
IPoIB as well 
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Verbs API 

• Use ibv_create_qp() and ibv_destroy_qp() to 
create/destroy parent and children QPs 

• struct ibv_qp_init_attr to include: 
– enum ibv_qpg_type   // QP Group type 

• IBV_QPG_NONE   // Not a QP Group type 

• IBV_QPG_PARENT   // RSC and/or TSC Parent QP 

• IBV_QPG_CHILD_RX  // RSC child QP 

• IBV_QPG_CHILD_TX   // TSC child QP 

– struct ibv_qpg_init_attrib  // Valid for ibv_qpg_type= 
IBV_QPG_PARENT, includes: 

• TSC child count (TSC Vector size) 

• RSC child count (RSC Vector size) 

• struct ibv_qp ibv_qpg_parent: points to parent QP  
// Valid for Ibv_qpg_type = IBV_QPG_CHILD_RX or IBV_QPG_CHILD_TX 

• Only ibv_qp_type = RAW or UD are supported 



Verbs API – cont. 

• Enable QP Group parent characteristics 

modification 

• struct ibv_qp_attr to include: 

– struct ibv_qpg_attrib for QP Group type attributes, 

includes the following members: 
– RSC Hash func type 

– RSC Hash header fields selection: IPv4, IPv6, UDP, TCP 

– RSC Key 

– RSC indirection table update 

• Where ibv_qp_attr_mask to indicate updated 

type 
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User mode Time Stamping 

• Enable accurate user mode statistics and tracking 

• Perform time stamp on transmit and receive events 

• Expose OS bypass time stamping facilities 

• Expose adapter HW clock directly to user mode 

• Similar Verbs API can be used from kernel as well 

– Kernel ULPs can use it too 

• Can be used for: 

– Application latency measurement 

– Packet tracking/logging 

– Other.. 

 



Verbs API 

• Expose per CQ interrupt moderation 

• Expose CQ time stamping for receive and transmit 
completions 

• Add (exists in kernel, but requires extension): 
– ibv_modify_cq (ibv_cq*, ibv_cq_attr*, int attr_mask) 

• ibv_cq_attr to include: 
– enum ibv_ts_type  // For Time stamping enablement and type 

• Where enum ibv_ts_type: 
– TS_TYPE_NONE // No TS for the CQ please 

– TS_TYPE_RAW // Provide raw adapter free running clock 

– TS_TYPE_TOD // Provide translated TS to Time Of Day 

• ibv_poll_cq(ibv_cq*, num_entries, ibv_wc*) 
– Where struct ibv_wc to include u64 time stamp value 

• ibv_query_cq() // May be added to provide CQ characteristics 

 
 

 
 



User Mode Interrupt 

Moderation 



User Mode Interrupt Moderation 

• Today supported from kernel only 

• Extend to user mode 

• Verbs API 

– ibv_modify_cq (ibv_cq*, ibv_cq_attr*, int attr_mask) 

– Where ibv_cq_attr to include: 

• count  // number of CQEs to trigger an event 

• period // max period in usec prior to triggering an event 

• ibv_query_cq() // May be added to provide CQ 

characteristics 
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OS Bypass Sockets 

Complete accelerated user mode stack 



Complete OS Bypass 
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Performance Numbers – TCP 
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Performance Numbers – Multicast 

 

 

 

 

Msg Size 
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Application example: memcached 



Summary 

• User mode Ethernet is well suited for verbs API 

• Reuse existing mature elements of verbs 

• Capable of providing NIC standard and new 

offloads  

• But now each flow can have it dedicated “NIC” 

• Ready for your next user mode stack  
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Thank You 


