Portals 4 Exascale

Ron Brightwell
March 26, 2012

www.openfabrics.org 1

Outline (%

* Recap from last year

« Portals overview

« Portals 4.0 implementations
 OpenSHMEM on Portals 4.0

« Portals 4.0 triggered operations
— MPI collective operations
— MPI rendezvous protocol

* Linux XPMEM

www.openfabrics.org 2

 Qverview of Portals 4.0 API

* Research vehicle for NIC architecture co-design
* Description of IB reference implementation

Portals Network Programming
Interface

* Network API developed by Sandia, U. New Mexico, Intel
» Previous generations of Portals deployed on several production massively
parallel systems
— 1993: 1800-node Intel Paragon (SUNMOS)
— 1997: 10,000-node Intel ASCI Red (Puma/Cougar)
— 1999: 1800-node Cplant cluster (Linux)
— 2005: 10,000-node Cray Sandia Red Storm (Catamount)
— 2009: 18,688-node Cray XT5 — ORNL Jaguar (Linux)

« Focused on providing
— Lightweight “connectionless” model for massively parallel systems
— Low latency, high bandwidth
— Independent progress
— Overlap of computation and communication
— Scalable buffering semantics
— Protocol building blocks to support higher-level protocols

* Supports MPIl, SHMEM, ARMCI, GASNet, Lustre, etc.
S S S S S S S ST ST ST ST E ST E S E S E S E S E SR

Portals 4.0 Implementations

—

 OpenFabrics Verbs
— Provided by System Fabric Works

— Provides a high-performance reference implementation for
experimentation

— Help identify issues with API, semantics, performance, etc.
— Independent analysis of the specification
« Shared memory
— Offers consistent and understandable performance characteristics

— Provides ability to accurately measure instruction count for Portals
operations

— Better characterization of operations that impact latency and message
rate

— Evaluation of single-core onloading performance limits
» Structural Simulation Toolkit (SST)
— Partial implementation for exploring NIC structures for offload

OPENFABRICS
AL

" OpenSHMEM on Portals 4.0

Barrett, Brightwell, Hemmert, Pedretti, Wheeler, Underwood. “Enhanced Support
for OpenSHMEM Communication in Portals,” in Proceedings of the IEEE
Symposium on High-Performance Interconnects, August 2011.

OpenSHMEM

o —

—— — —— EEE=———————

Proposed community standard for SHMEM
Partitioned Global Address Space library

Put, get, atomic operations, plus collective
communication

Encourages asynchronous, small message
patterns

OpenSHMEM

« Communication calls
— Elemental put, block put, strided put
— Elemental get, block get, strided get
— Atomic operations
— All operations provide local completion
— Read and read-write operations imply remote completion

« Operations must target symmetric memory
— Global data: Global and static variables in C, Common block
— Symmetric Heap: global dynamic memory

* Ordering / completion functions

— Fence/quiet
— Address wait

Portals 4.0

« Communication Calls
— Non-blocking Put, Get, Atomic
— Matching or non-matching receive interfaces

« Completion Semantics
— Completion events for local and remote completion
— Counters of events / bytes for light-weight messaging

« Memory Model
— Generally, no atomicity / data ordering guarantees
— Maximum message size for atomic operations
— Maximum size for single-byte write-after-write ordering
— May provide more general write-after-write ordering
— Maximum size for local completion of put/atomic operations

)<

heap

data

text

heap

Sym. heap

data

text

Memory Layout

stack (~)
Put MD
N —
//X
heap
Sym. Heap (Heap LE |
4 A
data Data LE
\. J
text

Portals Data Structures

NI

portal table

Err EQ

Put MD

Get MD

Put CT

Get CT

Put Operations &

void shmem long p(long *addr, long value, int pe) {
ptl process t peer;
ptl pt index t pt;
long offset;
peer.rank = pe;
GET REMOTE ACCESS (target, pt, offset);

PtlPut (shmem internal put md h,
(ptl size t) é&value,
sizeof (value),

PTL CT ACK REQ,
peer,

pt,

OI

offset,

NULL,

0);

Get Operations &

volid shmem double get (double *target, const double *sgﬁrce,

size t len, int pe) {

ptl ct event t ct;
peer.rank = pe;
GET REMOTE ACCESS (source, pt, offset);

PtlGet (shmem internal get md h,
(ptl size t) target,
len * sizeof (double),
peer,
pt,
0,
offset,
0) 7
shmem internal pending get counter++;
Pt1CTWait (shmem internal get ct h,
shmem internal pending get counter,
&ct) ;

)
T

Results &)

e — — ? — - — — = — ,}

 Running SHMEM codes over both shared memory and
InfiniBand

* Results shown for shared memory
« 3.33 GHz Westmere EP w/ 1333 DDR3 Linux system

* Y Round Trip Latency:
— Raw Portals: 0.43 ps
— OpenSHMEM: 0.39 us

— Numbers misleading; slightly more work on receive side for Raw
Portals

Message Rate

7.4e+00 T T T |\

[Ir -
Portals LE/CT —+—
SHMEM %
7.2e+06 i
—~ 7e+06 _
o}
a
(@]
O
S 6.8e+06 i
~
[99]
O
o
O 6.6e+06 | i
0
O
£
6.4e+06 i
2 ANV
] -l
m VA X
O 6.2e+06 [T i
r[j \\\\
m \\\
U) \\\
(D \\\
= 6e+06 L -
5.8e+06 S i
Ty
5.6e+06 ' ' I ! I !
0 20 40 60 80 100 120 140

Message size (bytes)

NetPIPE Bandwidth

lOOOOO N T T L | T T L T T | T L T T T T T L T T L

[Portals LE/CT —+—]

I SHMEM %~ T s T

- /x/X/X'X ST

X e

—~ 10000 -

T 4

o]

5]

3]

q) 4
0
~
o

i) i
>
Q
IS

o 1000 -

10]

E]

e]
D
T
-

=z i
T
IS
I

m 100 -

10 , L , L , L , Ll , L , L , N

1000

Message size

10000
(bytes)

100000

le+06

le+07

Triggered Operations for
Collective Communication

Underwood, et al. “Enabling Flexible Collective Communication Offload with
Triggered Operations,” in Proceedings of the IEEE Symposium on High-
Performance Interconnects, August 2011.

Motivation

ALLIANCE

e =
—— — e

Collectives are important to a broad array of applications

— As node counts grow, it becomes hard to keep collective time
low

Offload provides a mechanism to reduce collective time

— Eliminates portion of Host-to-NIC latency from the critical path

— Relatively complex collective algorithms are constantly refined
and tuned

Building blocks provide a better

— Allow algorithm research and implementation to occur on the
host

— Provides a simple set of hardware mechanisms to implement
A general purpose APl is needed to express the building
blocks

Triggered Operations

—

=

« Lightweight events are counters of various network
transactions

— One counter can be attached to multiple different operations or
even types of operations

— Fine grained control of what you count is provided
 Portals operation is “triggered” when a counter reaches
a threshold specified in the operations

— Various types of operations can be triggered
— Triggered counter update allows chaining of local operations

Generality of Triggered &

Operations VR
——— ———— = = , . ——————
 Numerous collectives have been implemented so far
— Allreduce
— Bcast
— Barrier

 Numerous algorithms have been implemented for
multiple collectives
— Binary tree
— k-nomial tree
— Pipelined broadcast
— Dissemination barrier
— Recursive doubling

Simulation Methodology

— — e ——

e Utllized SST simulator developed at Sandia

* Modeled processor and NIC as separate state
machines

— Fixed delays between states to model delays and
overhead

— Single state machine for processor, multiple for NIC to
model concurrent hardware blocks

* Modeled several combinations of parameters
defined by latency and message rate

— Allocated delay to various units that were modeled

- _____ Match/Event (FIFO} Portals Cmds

Offload

To Network

|
From !
Network =,
g 1 ¢ " Em Em o = o
o | .
2 1 Portals Unit
|

" 300ns/30%

1
1 300ns / 30%
1

500ns / 50%

Host Interface

Simulation Settings

(a) simulation parameters

Property Range

Msg Latency SO0 ns, 1EH) ns, 1500) ns

Msg Rate 5 Mmsgs/s, 10 Mmsgs/s

Overhead Foa et
NIC Msg Rate 625 Mmsgs/s

Rir Latency S ns

setup Time 200) ns

Cache Line 64 B ytes
Miss Latency 1K) ns

MNowse 250 ns @ [00OKHe, 25 ps @ |KHe, 2.5 ms @ [{H=

(b) simulaton configurations

S0 ns | 1K ns | 150H) ns
5 Mmsgs/s X X
10 Mmsgs/s A A

Allreduce

OPENFABRICS
500ns, 10 Mmsgs/s ALLIANCE
25000 T i | | T T
Host Tree: Radix-8 —+—
Host Tree: Radix-16 ——
Triggered Tree: Radix-8 —%—
Triggered Tree: Radix-16
Recursive Doubling ——
20000 - Triggered Recursive Doubling —&— N
2 15000 |- =
Q
=
'—
8
S o
=
L
Z 10000 -
5000
fl_-"'__. T i
0 | | I I I L | |
64 128 256 512 1024 2048 4096 8192 16384 32768

MNodes

Noise Simulations

——————— _
— T = — -

——— e

* Three noise profiles were simulated (2.5% noise
for each)
— 250 ns @ 100KHz
— 25 us @ 1KHz
— 2.5ms @ 10Hz
* Noise events were randomly distributed
— Stopped all host processing during a noise event
— NIC processing continued

* Timed individual collective operations (first entry
to last exit)

Allreduce With Noise

25US@1KHZ ALLIANCE

I T

| T T T
Host Tree: Radix-8 —+—

140000 Host Tree w/ Noise: Radix-8 —<— .
Triggered Tree: Radix-16 —x—
Triggered Tree wf Noise: Radix-16 —++—
Recursive Doubling —m—
120000 Recursive Doubling w/ Noise —&—

Triggered Recursive Doubling —&—
Triggered Recursive Doubling w/ Noise

100000

Allreduce Time (ns)

64 128 256 512 1024 2048 4096 8192 16384 32768

Modes

Noise Simulation Results O

ALLIANCE

— —

* Recursive doubling has poor noise tolerance

e Offload gives significant improvement in noise

tolerance
— Partly from reduced time
— Partly from reduced host participation

— Synchronizing operation still cannot complete until
everyone contributes a value

* Interesting shape of curves in middle noise case
— Host based latency continues to grow with node count
— NIC based latency plateaus

Interesting Things We Learned

— ~ = — e

— - —— ———— —_—

 Time to initiate a transaction from the host to the NIC
makes things difficult
— Even with a high NIC rate, can be rate limited by the host

— Limitation of using host to initiate all operations instead of
offloading algorithm

— If transactions are posted in correct order, limitation is effectively
mitigated
* Proper message scheduling is important
— Time between message initiations on the host (gap) matches
network hop latency: send the far away ones first!
« k-nomial trees are better, but the work at the root limits
the maximum value of k

* You can have speed or reproducibility, but...
I

>

OPENFABRICS
ALLIANCE

b

Triggered Collectives Summary

e —— —

« Triggered operations provide a general set of building
blocks
— Supports a variety of collective operations
— Supports a variety of algorithms
— Has usage beyond just collectives offload

* Collective offload has limited performance upside versus
iIdealized host implementation

— 2x performance improvement due to improved latency and
Improved message rate

— Performance could be improved somewhat by having host
“push” data
* Noise sensitivity substantially reduced when operations

are offloaded
IR

Triggered Operations
for a Rendezvous Protocol

Barrett, Brightwell, Hemmert, Wheeler, Underwood. “Using Triggered Operations
to Offload Rendezvous Messages,” in Proceedings of the European MPI Users’
Group Conference, September 2011.

Ping-Pong Bandwidth

3000 T T T T S I B — N I m—
0% Unexpected —+—
6.25% Unexpected ——
12.5% Unexpected —%—
25% Unexpected —5—
2500 |- 50% Unexpected A

100% Unexpected —&—

2000

1500

1000

Bandwidth (megabyte/second)

500

1 32 1K 32K 1M

Message size (bytes)

Ping-Pong Bandwidth

3000 T T T T T T T T T T 1 T T 1
Eager Protocol ——
Rendezvous Protocal ——
Triggered Protocol —%—

2500

2000

1500

Bandwidth {(megabyte/second)

1000

500

1 32 1K 32K 1M

Message size (bytes)

Linux XPMEM for Progress &)

« Based on SGI IRIX sproc lightweight process
— sprocs were able to attach segments of other sprocs to their address space
— Segments of other sprocs mapped at an offset in virtual address space
— Used to implement SHMEM and MPI on SGI systems

« SGI Altix
— Ran separate Linux images or “partitions”
— “Cross-partition” memory module allowed sharing address space between processes in
separate partitions (with hardware help)
— Also works for processes in the same OS partition
— XPMEM user-level API

+ xXpmem_make()
— Returns a unique handle representing a segment of the address space

« xpmem_get()
— Returns handle that can be used to map the segment of another process

+ Xpmem_attach()
— Returns the starting virtual address of a mapping for a given handle

* Exploring using XPMEM for progress rather than threads
« http://code.google.com/p/xpmem

Acknowledgments &

e Sandia
— Brian Barrett
— Scott Hemmert
— Kevin Pedretti
— Mike Levenhagen

e |ntel

— Keith Underwood
— Jerrie Coffman
— Roy Larsen

« System Fabric Works

www.openfabrics.org 36

Portals4 over IB+SM

Work by Frank Zago & Bob Pearson
Supported by Sandia and Intel

Progress Report

—

e 2010 base

— Focus was on supporting the spec not performance
— IB only

« 2011 changes
— Merged IB and SM (KNEM) implementations
— Implemented correct overflow behavior
— Implemented late MR mapping
— Performance tuning, focused on latency

— All shmem and MPI tests passing, tests up to 32
nodes (Stan Smith @intel)

www.openfabrics.org 38

&

OPENFABRICS
rogress AN CE

Performance &j

===

LE/CT short message latency 610 nsec 3.28 usec
ME/EQ short message latency 690 nsec 3.18 usec
Short message rate 3.26 M msg/sec 1.07 M msg/sec

Measurements made on 2GHz Magny-cours nodes
with CX2 QDR HCA and 1 QDR switch
l.e. old and slow

www.openfabrics.org 40

2012 Work Plan

———

« Maintenance
— Track spec changes (mostly minor)
— Continue testing and shoot bugs

« Code refactoring

— Reduce lines of code and cleanup three
Implementations: ib, sm, mc

* Performance tuning
— Reduce CPU utilization is the focus
— Implement shared progress engine (XPMEM based)

www.openfabrics.org 41

» http://code.google.com/p/portals4/
— Then source->browse->svn->trunk
— Follow the directions in README, or

* % svn checkout
http://portals4.googlecode.com/src/trunk/

portals4-read-only

http://code.google.com/p/portals4/
http://portals4.googlecode.com/src/trunk/

