
Portals 4 Exascale

www.openfabrics.org 1

Ron Brightwell
March 26, 2012

• Recap from last year

• Portals overview

• Portals 4.0 implementations

• OpenSHMEM on Portals 4.0

• Portals 4.0 triggered operations

– MPI collective operations

– MPI rendezvous protocol

• Linux XPMEM

www.openfabrics.org 2

Outline

Recap From Last Year

• Overview of Portals 4.0 API

• Research vehicle for NIC architecture co-design

• Description of IB reference implementation

www.openfabrics.org 3

Portals Network Programming

Interface
• Network API developed by Sandia, U. New Mexico, Intel

• Previous generations of Portals deployed on several production massively

parallel systems

– 1993: 1800-node Intel Paragon (SUNMOS)

– 1997: 10,000-node Intel ASCI Red (Puma/Cougar)

– 1999: 1800-node Cplant cluster (Linux)

– 2005: 10,000-node Cray Sandia Red Storm (Catamount)

– 2009: 18,688-node Cray XT5 – ORNL Jaguar (Linux)

• Focused on providing

– Lightweight “connectionless” model for massively parallel systems

– Low latency, high bandwidth

– Independent progress

– Overlap of computation and communication

– Scalable buffering semantics

– Protocol building blocks to support higher-level protocols

• Supports MPI, SHMEM, ARMCI, GASNet, Lustre, etc.

Portals 4.0 Implementations

• OpenFabrics Verbs

– Provided by System Fabric Works

– Provides a high-performance reference implementation for

experimentation

– Help identify issues with API, semantics, performance, etc.

– Independent analysis of the specification

• Shared memory

– Offers consistent and understandable performance characteristics

– Provides ability to accurately measure instruction count for Portals

operations

– Better characterization of operations that impact latency and message

rate

– Evaluation of single-core onloading performance limits

• Structural Simulation Toolkit (SST)

– Partial implementation for exploring NIC structures for offload

OpenSHMEM on Portals 4.0

Barrett, Brightwell, Hemmert, Pedretti, Wheeler, Underwood. “Enhanced Support

for OpenSHMEM Communication in Portals,” in Proceedings of the IEEE

Symposium on High-Performance Interconnects, August 2011.

OpenSHMEM

• Proposed community standard for SHMEM

• Partitioned Global Address Space library

• Put, get, atomic operations, plus collective

communication

• Encourages asynchronous, small message

patterns

www.openfabrics.org 7

OpenSHMEM

• Communication calls

– Elemental put, block put, strided put

– Elemental get, block get, strided get

– Atomic operations

– All operations provide local completion

– Read and read-write operations imply remote completion

• Operations must target symmetric memory

– Global data: Global and static variables in C, Common block

– Symmetric Heap: global dynamic memory

• Ordering / completion functions

– Fence/quiet

– Address wait

Portals 4.0

• Communication Calls

– Non-blocking Put, Get, Atomic

– Matching or non-matching receive interfaces

• Completion Semantics

– Completion events for local and remote completion

– Counters of events / bytes for light-weight messaging

• Memory Model

– Generally, no atomicity / data ordering guarantees

– Maximum message size for atomic operations

– Maximum size for single-byte write-after-write ordering

– May provide more general write-after-write ordering

– Maximum size for local completion of put/atomic operations

Memory Layout

stack

heap

data

text

Memory Layout

stack

heap

data

text

Sym. heap

Memory Layout

stack

heap

data

text

Sym. heap

Put MD Get MD

Heap LE

Data LE

Portals Data Structures

NI

Err EQ

Heap LE

Data LE

Target CT

Data PT

Heap PT

Put MD

Get MD

Put CT

Get CT

portal table

Put Operations

void shmem_long_p(long *addr, long value, int pe) {

 ptl_process_t peer;

 ptl_pt_index_t pt;

 long offset;

 peer.rank = pe;

 GET_REMOTE_ACCESS(target, pt, offset);

 PtlPut(shmem_internal_put_md_h,

 (ptl_size_t) &value,

 sizeof(value),

 PTL_CT_ACK_REQ,

 peer,

 pt,

 0,

 offset,

 NULL,

 0);

}

Get Operations

void shmem_double_get(double *target, const double *source,

 size_t len, int pe) {

 …

 ptl_ct_event_t ct;

 peer.rank = pe;

 GET_REMOTE_ACCESS(source, pt, offset);

 PtlGet(shmem_internal_get_md_h,

 (ptl_size_t) target,

 len * sizeof(double),

 peer,

 pt,

 0,

 offset,

 0);

 shmem_internal_pending_get_counter++;

 PtlCTWait(shmem_internal_get_ct_h,

 shmem_internal_pending_get_counter,

 &ct);

}

Results

• Running SHMEM codes over both shared memory and

InfiniBand

• Results shown for shared memory

• 3.33 GHz Westmere EP w/ 1333 DDR3 Linux system

• ½ Round Trip Latency:

– Raw Portals: 0.43 μs

– OpenSHMEM: 0.39 μs

– Numbers misleading; slightly more work on receive side for Raw

Portals

Message Rate

 5.6e+06

 5.8e+06

 6e+06

 6.2e+06

 6.4e+06

 6.6e+06

 6.8e+06

 7e+06

 7.2e+06

 7.4e+06

 0 20 40 60 80 100 120 140

M
e
s
s
a
g
e

R
a
t
e

(
m
e
s
s
a
g
e
s
/
s
e
c
o
n
d
)

Message size (bytes)

Portals LE/CT

SHMEM

NetPIPE Bandwidth

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
a
n
d
w
i
d
t
h

(
m
e
g
a
b
y
t
e
/
s
e
c
o
n
d
)

Message size (bytes)

Portals LE/CT

SHMEM

Triggered Operations for

Collective Communication
Underwood, et al. “Enabling Flexible Collective Communication Offload with

Triggered Operations,” in Proceedings of the IEEE Symposium on High-

Performance Interconnects, August 2011.

Motivation

• Collectives are important to a broad array of applications

– As node counts grow, it becomes hard to keep collective time

low

• Offload provides a mechanism to reduce collective time

– Eliminates portion of Host-to-NIC latency from the critical path

– Relatively complex collective algorithms are constantly refined

and tuned

• Building blocks provide a better

– Allow algorithm research and implementation to occur on the

host

– Provides a simple set of hardware mechanisms to implement

• A general purpose API is needed to express the building

blocks

Triggered Operations

• Lightweight events are counters of various network

transactions

– One counter can be attached to multiple different operations or

even types of operations

– Fine grained control of what you count is provided

• Portals operation is “triggered” when a counter reaches

a threshold specified in the operations

– Various types of operations can be triggered

– Triggered counter update allows chaining of local operations

Generality of Triggered
Operations

 Numerous collectives have been implemented so far

– Allreduce

– Bcast

– Barrier

 Numerous algorithms have been implemented for

multiple collectives

– Binary tree

– k-nomial tree

– Pipelined broadcast

– Dissemination barrier

– Recursive doubling

Simulation Methodology

 Utilized SST simulator developed at Sandia

 Modeled processor and NIC as separate state

machines

– Fixed delays between states to model delays and

overhead

– Single state machine for processor, multiple for NIC to

model concurrent hardware blocks

 Modeled several combinations of parameters

defined by latency and message rate

– Allocated delay to various units that were modeled

High-Level NIC Architecture

Simulation Settings

Allreduce
500ns, 10 Mmsgs/s

Noise Simulations

 Three noise profiles were simulated (2.5% noise

for each)

– 250 ns @ 100KHz

– 25 ms @ 1KHz

– 2.5 ms @ 10Hz

 Noise events were randomly distributed

– Stopped all host processing during a noise event

– NIC processing continued

 Timed individual collective operations (first entry

to last exit)

Allreduce With Noise
25 us @ 1 KHz

Noise Simulation Results

 Recursive doubling has poor noise tolerance

 Offload gives significant improvement in noise

tolerance

– Partly from reduced time

– Partly from reduced host participation

– Synchronizing operation still cannot complete until

everyone contributes a value

 Interesting shape of curves in middle noise case

– Host based latency continues to grow with node count

– NIC based latency plateaus

Interesting Things We Learned

• Time to initiate a transaction from the host to the NIC

makes things difficult

– Even with a high NIC rate, can be rate limited by the host

– Limitation of using host to initiate all operations instead of

offloading algorithm

– If transactions are posted in correct order, limitation is effectively

mitigated

• Proper message scheduling is important

– Time between message initiations on the host (gap) matches

network hop latency: send the far away ones first!

• k-nomial trees are better, but the work at the root limits

the maximum value of k

• You can have speed or reproducibility, but…

Triggered Collectives Summary

• Triggered operations provide a general set of building

blocks

– Supports a variety of collective operations

– Supports a variety of algorithms

– Has usage beyond just collectives offload

• Collective offload has limited performance upside versus

idealized host implementation

– 2x performance improvement due to improved latency and

improved message rate

– Performance could be improved somewhat by having host

“push” data

• Noise sensitivity substantially reduced when operations

are offloaded

Triggered Operations

for a Rendezvous Protocol
Barrett, Brightwell, Hemmert, Wheeler, Underwood. “Using Triggered Operations

to Offload Rendezvous Messages,” in Proceedings of the European MPI Users’

Group Conference, September 2011.

Ping-Pong Bandwidth

Ping-Pong Bandwidth

Linux XPMEM for Progress

• Based on SGI IRIX sproc lightweight process

– sprocs were able to attach segments of other sprocs to their address space

– Segments of other sprocs mapped at an offset in virtual address space

– Used to implement SHMEM and MPI on SGI systems

• SGI Altix

– Ran separate Linux images or “partitions”

– “Cross-partition” memory module allowed sharing address space between processes in

separate partitions (with hardware help)

– Also works for processes in the same OS partition

– XPMEM user-level API

• xpmem_make()

– Returns a unique handle representing a segment of the address space

• xpmem_get()

– Returns handle that can be used to map the segment of another process

• Xpmem_attach()

– Returns the starting virtual address of a mapping for a given handle

• Exploring using XPMEM for progress rather than threads

• http://code.google.com/p/xpmem

Acknowledgments

• Sandia

– Brian Barrett

– Scott Hemmert

– Kevin Pedretti

– Mike Levenhagen

• Intel

– Keith Underwood

– Jerrie Coffman

– Roy Larsen

• System Fabric Works

www.openfabrics.org 36

Portals4 over IB+SM

Work by Frank Zago & Bob Pearson

Supported by Sandia and Intel

Progress Report

• 2010 base

– Focus was on supporting the spec not performance

– IB only

• 2011 changes

– Merged IB and SM (KNEM) implementations

– Implemented correct overflow behavior

– Implemented late MR mapping

– Performance tuning, focused on latency

– All shmem and MPI tests passing, tests up to 32

nodes (Stan Smith @intel)

www.openfabrics.org 38

Wire

SM

RDMA RDMA P4 P4

req
Progress

thread

MD
LE/
ME DATA OUT PHASE (bcopy, RDMA or KNEM)

DATA IN PHASE (bcopy, RDMA or KNEM)

ack or rep

send1

send2

ack/rep put/get

IB ack

Performance

Test SM Transport IB Transport

LE/CT short message latency 610 nsec 3.28 usec

ME/EQ short message latency 690 nsec 3.18 usec

Short message rate 3.26 M msg/sec 1.07 M msg/sec

www.openfabrics.org 40

Measurements made on 2GHz Magny-cours nodes

with CX2 QDR HCA and 1 QDR switch

i.e. old and slow

2012 Work Plan

• Maintenance

– Track spec changes (mostly minor)

– Continue testing and shoot bugs

• Code refactoring

– Reduce lines of code and cleanup three

implementations: ib, sm, mc

• Performance tuning

– Reduce CPU utilization is the focus

– Implement shared progress engine (XPMEM based)

www.openfabrics.org 41

• http://code.google.com/p/portals4/

– Then source->browse->svn->trunk

– Follow the directions in README, or

• % svn checkout

http://portals4.googlecode.com/src/trunk/

portals4-read-only

Where to find the code

http://code.google.com/p/portals4/
http://portals4.googlecode.com/src/trunk/

