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Outline (%

* Recap from last year

« Portals overview

« Portals 4.0 implementations
 OpenSHMEM on Portals 4.0

« Portals 4.0 triggered operations
— MPI collective operations
— MPI rendezvous protocol

* Linux XPMEM
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 Qverview of Portals 4.0 API

* Research vehicle for NIC architecture co-design
* Description of IB reference implementation




Portals Network Programming
Interface

* Network API developed by Sandia, U. New Mexico, Intel
» Previous generations of Portals deployed on several production massively
parallel systems
— 1993: 1800-node Intel Paragon (SUNMOS)
— 1997: 10,000-node Intel ASCI Red (Puma/Cougar)
— 1999: 1800-node Cplant cluster (Linux)
— 2005: 10,000-node Cray Sandia Red Storm (Catamount)
— 2009: 18,688-node Cray XT5 — ORNL Jaguar (Linux)

« Focused on providing
— Lightweight “connectionless” model for massively parallel systems
— Low latency, high bandwidth
— Independent progress
— Overlap of computation and communication
— Scalable buffering semantics
— Protocol building blocks to support higher-level protocols

* Supports MPIl, SHMEM, ARMCI, GASNet, Lustre, etc.
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Portals 4.0 Implementations

—

 OpenFabrics Verbs
— Provided by System Fabric Works

— Provides a high-performance reference implementation for
experimentation

— Help identify issues with API, semantics, performance, etc.
— Independent analysis of the specification
« Shared memory
— Offers consistent and understandable performance characteristics

— Provides ability to accurately measure instruction count for Portals
operations

— Better characterization of operations that impact latency and message
rate

— Evaluation of single-core onloading performance limits
» Structural Simulation Toolkit (SST)
— Partial implementation for exploring NIC structures for offload
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" OpenSHMEM on Portals 4.0

Barrett, Brightwell, Hemmert, Pedretti, Wheeler, Underwood. “Enhanced Support
for OpenSHMEM Communication in Portals,” in Proceedings of the IEEE
Symposium on High-Performance Interconnects, August 2011.




OpenSHMEM
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Proposed community standard for SHMEM
Partitioned Global Address Space library

Put, get, atomic operations, plus collective
communication

Encourages asynchronous, small message
patterns




OpenSHMEM

« Communication calls
— Elemental put, block put, strided put
— Elemental get, block get, strided get
— Atomic operations
— All operations provide local completion
— Read and read-write operations imply remote completion

« Operations must target symmetric memory
— Global data: Global and static variables in C, Common block
— Symmetric Heap: global dynamic memory

* Ordering / completion functions

— Fence/quiet
— Address wait



Portals 4.0

« Communication Calls
— Non-blocking Put, Get, Atomic
— Matching or non-matching receive interfaces

« Completion Semantics
— Completion events for local and remote completion
— Counters of events / bytes for light-weight messaging

« Memory Model
— Generally, no atomicity / data ordering guarantees
— Maximum message size for atomic operations
— Maximum size for single-byte write-after-write ordering
— May provide more general write-after-write ordering
— Maximum size for local completion of put/atomic operations
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Portals Data Structures
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Put Operations &

void shmem long p(long *addr, long value, int pe) {
ptl process t peer;
ptl pt index t pt;
long offset;
peer.rank = pe;
GET REMOTE ACCESS (target, pt, offset);

PtlPut (shmem internal put md h,
(ptl size t) é&value,
sizeof (value),

PTL CT ACK REQ,
peer,

pt,

OI

offset,

NULL,

0);



Get Operations &

volid shmem double get (double *target, const double *sgﬁrce,

size t len, int pe) {

ptl ct event t ct;
peer.rank = pe;
GET REMOTE ACCESS (source, pt, offset);

PtlGet (shmem internal get md h,
(ptl size t) target,
len * sizeof (double),
peer,
pt,
0,
offset,
0) 7
shmem internal pending get counter++;
Pt1CTWait (shmem internal get ct h,
shmem internal pending get counter,
&ct) ;

)
T



Results &)
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 Running SHMEM codes over both shared memory and
InfiniBand

* Results shown for shared memory
« 3.33 GHz Westmere EP w/ 1333 DDR3 Linux system

* Y Round Trip Latency:
— Raw Portals: 0.43 ps
— OpenSHMEM: 0.39 us

— Numbers misleading; slightly more work on receive side for Raw
Portals



Message Rate
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NetPIPE Bandwidth
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Triggered Operations for
Collective Communication

Underwood, et al. “Enabling Flexible Collective Communication Offload with
Triggered Operations,” in Proceedings of the IEEE Symposium on High-
Performance Interconnects, August 2011.




Motivation
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Collectives are important to a broad array of applications

— As node counts grow, it becomes hard to keep collective time
low

Offload provides a mechanism to reduce collective time

— Eliminates portion of Host-to-NIC latency from the critical path

— Relatively complex collective algorithms are constantly refined
and tuned

Building blocks provide a better

— Allow algorithm research and implementation to occur on the
host

— Provides a simple set of hardware mechanisms to implement
A general purpose APl is needed to express the building
blocks



Triggered Operations
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« Lightweight events are counters of various network
transactions

— One counter can be attached to multiple different operations or
even types of operations

— Fine grained control of what you count is provided
 Portals operation is “triggered” when a counter reaches
a threshold specified in the operations

— Various types of operations can be triggered
— Triggered counter update allows chaining of local operations




Generality of Triggered &

Operations VR
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 Numerous collectives have been implemented so far
— Allreduce
— Bcast
— Barrier

 Numerous algorithms have been implemented for
multiple collectives
— Binary tree
— k-nomial tree
— Pipelined broadcast
— Dissemination barrier
— Recursive doubling



Simulation Methodology
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e Utllized SST simulator developed at Sandia

* Modeled processor and NIC as separate state
machines

— Fixed delays between states to model delays and
overhead

— Single state machine for processor, multiple for NIC to
model concurrent hardware blocks

* Modeled several combinations of parameters
defined by latency and message rate

— Allocated delay to various units that were modeled
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Simulation Settings

(a) simulation parameters

Property Range

Msg Latency SO0 ns, 1EH) ns, 1500) ns

Msg Rate 5 Mmsgs/s, 10 Mmsgs/s

Overhead Foa et
NIC Msg Rate 625 Mmsgs/s

Rir Latency S ns

setup Time 200) ns

Cache Line 64 B ytes
Miss Latency 1K) ns

MNowse 250 ns @ [00OKHe, 25 ps @ |KHe, 2.5 ms @ [{H=

(b) simulaton configurations

S0 ns | 1K ns | 150H) ns
5 Mmsgs/s X X
10 Mmsgs/s A A




Allreduce
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Noise Simulations
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* Three noise profiles were simulated (2.5% noise
for each)
— 250 ns @ 100KHz
— 25 us @ 1KHz
— 2.5ms @ 10Hz
* Noise events were randomly distributed
— Stopped all host processing during a noise event
— NIC processing continued

* Timed individual collective operations (first entry
to last exit)



Allreduce With Noise

25US@1KHZ ALLIANCE

I T

| T T T
Host Tree: Radix-8 —+—

140000 Host Tree w/ Noise: Radix-8 —<— .
Triggered Tree: Radix-16 —x—
Triggered Tree wf Noise: Radix-16 —++—
Recursive Doubling —m—
120000 Recursive Doubling w/ Noise —&—

Triggered Recursive Doubling —&—
Triggered Recursive Doubling w/ Noise

100000

Allreduce Time (ns)

64 128 256 512 1024 2048 4096 8192 16384 32768

Modes



Noise Simulation Results O
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* Recursive doubling has poor noise tolerance

e Offload gives significant improvement in noise

tolerance
— Partly from reduced time
— Partly from reduced host participation

— Synchronizing operation still cannot complete until
everyone contributes a value

* Interesting shape of curves in middle noise case
— Host based latency continues to grow with node count
— NIC based latency plateaus




Interesting Things We Learned
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 Time to initiate a transaction from the host to the NIC
makes things difficult
— Even with a high NIC rate, can be rate limited by the host

— Limitation of using host to initiate all operations instead of
offloading algorithm

— If transactions are posted in correct order, limitation is effectively
mitigated
* Proper message scheduling is important
— Time between message initiations on the host (gap) matches
network hop latency: send the far away ones first!
« k-nomial trees are better, but the work at the root limits
the maximum value of k

* You can have speed or reproducibility, but...
I
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Triggered Collectives Summary
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« Triggered operations provide a general set of building
blocks
— Supports a variety of collective operations
— Supports a variety of algorithms
— Has usage beyond just collectives offload

* Collective offload has limited performance upside versus
iIdealized host implementation

— 2x performance improvement due to improved latency and
Improved message rate

— Performance could be improved somewhat by having host
“push” data
* Noise sensitivity substantially reduced when operations

are offloaded
IR




Triggered Operations
for a Rendezvous Protocol

Barrett, Brightwell, Hemmert, Wheeler, Underwood. “Using Triggered Operations
to Offload Rendezvous Messages,” in Proceedings of the European MPI Users’
Group Conference, September 2011.
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Ping-Pong Bandwidth
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Linux XPMEM for Progress &)

« Based on SGI IRIX sproc lightweight process
— sprocs were able to attach segments of other sprocs to their address space
— Segments of other sprocs mapped at an offset in virtual address space
— Used to implement SHMEM and MPI on SGI systems

«  SGI Altix
— Ran separate Linux images or “partitions”
— “Cross-partition” memory module allowed sharing address space between processes in
separate partitions (with hardware help)
— Also works for processes in the same OS partition
— XPMEM user-level API

+  xXpmem_make()
— Returns a unique handle representing a segment of the address space

«  xpmem_get()
— Returns handle that can be used to map the segment of another process

+  Xpmem_attach()
— Returns the starting virtual address of a mapping for a given handle

* Exploring using XPMEM for progress rather than threads
« http://code.google.com/p/xpmem
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Portals4 over IB+SM

Work by Frank Zago & Bob Pearson
Supported by Sandia and Intel




Progress Report

—

e 2010 base

— Focus was on supporting the spec not performance
— IB only

« 2011 changes
— Merged IB and SM (KNEM) implementations
— Implemented correct overflow behavior
— Implemented late MR mapping
— Performance tuning, focused on latency

— All shmem and MPI tests passing, tests up to 32
nodes (Stan Smith @intel)
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Performance &j

===

LE/CT short message latency 610 nsec 3.28 usec
ME/EQ short message latency 690 nsec 3.18 usec
Short message rate 3.26 M msg/sec 1.07 M msg/sec

Measurements made on 2GHz Magny-cours nodes
with CX2 QDR HCA and 1 QDR switch
l.e. old and slow
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2012 Work Plan

———

« Maintenance
— Track spec changes (mostly minor)
— Continue testing and shoot bugs

« Code refactoring

— Reduce lines of code and cleanup three
Implementations: ib, sm, mc

* Performance tuning
— Reduce CPU utilization is the focus
— Implement shared progress engine (XPMEM based)
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» http://code.google.com/p/portals4/
— Then source->browse->svn->trunk
— Follow the directions in README, or

* % svn checkout
http://portals4.googlecode.com/src/trunk/

portals4-read-only



http://code.google.com/p/portals4/
http://portals4.googlecode.com/src/trunk/

