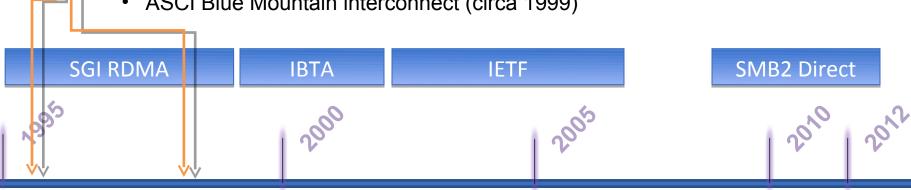


What a Long Strange Trip It's Been:

Moving RDMA into Broad Data Center Deployments

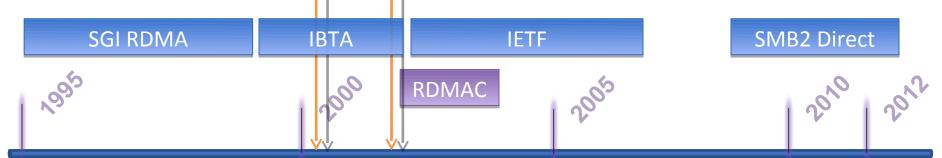
Author: Jim Pinkerton, Partner Architect, Microsoft

Date: 3/25/2012


What a Long Strange Trip

- Who am I? an old fart
- SGI
 - Proprietary RDMA 1995-2000
 - Firmware developer for SGI Challenge HIPPI-800 project

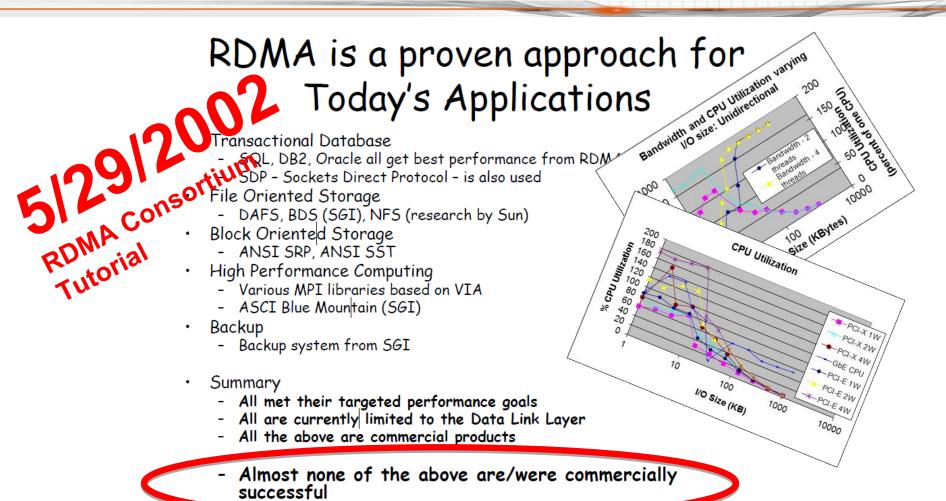
Standards based RDMA


- Principal Software Engineer on HIPPI-6400 on SGI Onyx
- Helped launch Scheduled Transfers with Greg Chesson and many others (ANSI stnd in 2000), SCSI Scheduled Transfers (SST) w/ Steph Bailey
- ASCI Blue Mountain interconnect (circa 1999)

What a Long Strange Trip

- Microsoft: 2000 until now
 - IBTA: Co-Chair Software Working Group, on board of IBTA
 - Co-Author of Sockets Direct Protocol (SDP) 2002
 - Herded cats on IBTA Verbs 1.0
 - RDMA Consortium: helped found it. Co-chair working group
 - Co-Author Verbs port to iWARP, SDP port to iWARP, DDP
 - RDMA Consortium (RDMAC) formed 5/02
 - RDMAC RDMAP, DDP, MPA completed 10/02
 - RDMAC Verbs completed 4/03
 - iSCSI Extensions for RDMA (iSER) 7/03, Sockets Direct Protocol (SDP) 10/03

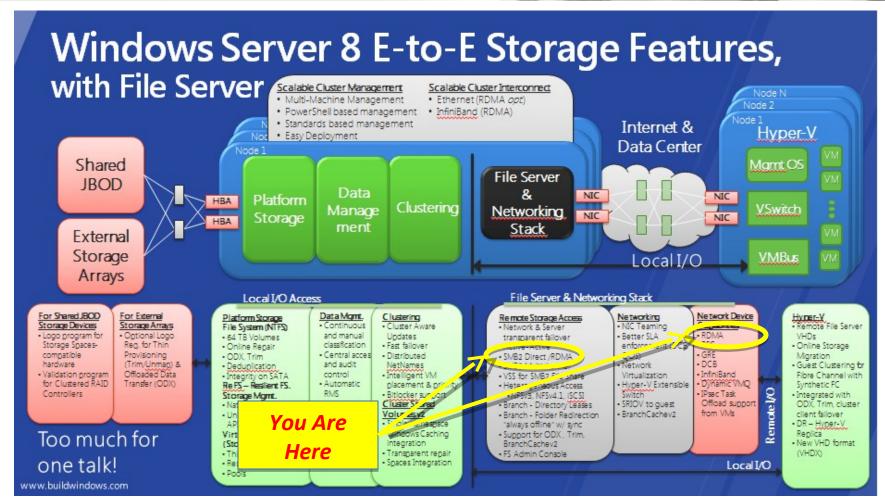
What a Long Strange Trip



- Microsoft (still there...)
 - IETF RDDP Work Group Chartered 2003
 - Co-author of RDMA security draft 10/07
 - RDMAC core specs become RFCs, with minor changes 10/07
 - (except SDP and Verbs)
 - iSER becomes RFC 10/07
 - IPS Working Group Disbanded 11/07
 - STORM WG chartered 2009
 - Open Fabrics
 - Helped charter Windows OFED (Windows Working Group) with Windows HPC team
 - Transitioned to learn storage for real...

I thought I knew what I was doing...

My Goals – For Far Too Long...


- Low overhead network protocol on <u>both</u> high speed phy and volume phy
 - Overhead can be CPU, latency, ...
- Make it useful to the masses not just clusters
- Find an app

But I missed the system...

SMB2 Direct

The System

From www.buildwindows.com talk SAC-446

Requirements for RDMA Broad Data Center Deployment (1/3)

- Goal is to enable data center scale, one fabric
 - Not contained to clusters within the data center
 - Not with two networks
- Must interact well with existing data center management infrastructure
 - Encapsulate IP traffic
 - Support mapping of ethernet protocols
 - IGMP, ARP, Broadcast, Multicast, VLAN, NVGRE
 - Integrate with system statistics, performance counters
 - Compatible with firewall rules
 - Supports remote boot environment

Requirements for RDMA broad Data Center Deployment (2/3)

- Network must be able to be highly fault tolerant
 - Preferably active-active with transparent failover
- Must be extremely easy to deploy
 - On by default
- Security is critical
 - No buffers can be handed to an application that are still able to be modified from the network

Requirements for RDMA broad Data Center Deployment (3/3)

- Must have an end-to-end scenario/application
 - I chose file-based storage
 - Storage is "different" Storage latencies are not HPC latencies
 - BW focus is large I/Os (I chose 512 KB)
 - IOPs focus is small I/Os (I chose 8 KB)
 - Latency focus is log file (I chose 1 KB writes)

SMB2.2 Requirements of SMB Direct (SMB over RDMA)

- Goal for SMB2.2:
 - Remote file storage similar to local in functionality, performance, reliability, availability
 - RDMA was critical to achieve performance goals
- SMB2.2:
 - Integrated with application snapshots
 - Transparent file server node & network failover
 - Bounded time (<<25 sec), under full load (20K clients)
 - CPU overhead the same as local attached storage
 - Applicable for cluster storage interconnect and file serving to server applications

SMB2.2 Requirements of SMB Direct (SMB over RDMA)

- Scalable multiple interfaces, multiple connections per interface
 - Active-active with transparent failover of interfaces
 - Multiple connections per interface
- Virtualization and live migration
 - Map local storage within a VM to remote file storage
 - On moving a VM, be able to transparently reconnect even if the only interface is non-RDMA
 - On moving a VM, be able to transparently upgrade if RDMA capable NIC appears

On Bring Up...

- Large I/Os hit the goals immediately after the system started working
 - Serious system bottlenecks (pre Sandy Bridge)
- Small I/Os we spent a year tuning
 - 8 KB are zero-copy (RDMA)
 - 1 KB uses Send/Rcv (one copy)
- Latency not as big a focus because of nonvolatile storage focus (i.e. storage is slow)
- Supporting 3 RDMA fabrics requires swatting a lot of bugs on a per-vendor basis...

UltraCam Aerial

Graz, Austria UltraCam/development Commercial software Computer vision research

Vectors

BlockView

UltraCamM UltraCamP

Boulder, Colorado

Bing Maps data center Software development Acquisition management

Streetside

UltraMap

TERRESTRIAL

SMB Direct Beta Deployments Bing Maps

- Compute farm with massive data ingest
 - Extreme focus on efficiency & cost
 - Phased deployment of Windows Server "8"
- The Bing Maps data center
 - Multiple containers
 - ~2000 nodes, ~20K cores, 55 PB of data
 - Growing quickly
 - Transitioned from 1 gigabit network to 100% QDR InfiniBand
 - Every node is a file server and a compute engine
 - Initially IP over IB
 - SMB Direct in beta (just 44 nodes today)
 - ~17 gbits/sec throughput in production today (disk to network to memory), 512 KB IO, one outstanding IO

Other Deployments

- Microsoft internal VM farm (iWARP)
 - Runs automated tests for Windows
 - Everything is virtualized
 - Just starting to deploy
- Several others that aren't public yet
 - ROCE, iWARP, InfiniBand

Open Protocol Documentation

- All SMB2 protocols published, including RDMA
 - Bing for "ms-smbd protocol" ©
- Protocol Family
 - Existing docs being updated
- MS-FSCC (File Rosem Sonat 8:00am.

 MS-FSA File System

 - - MS-SMBD SMB2 Direct (RDMA)
 - MS-FSRVP Remote VSS Protocol
 - MS-SWN SMB Witness Protocol

Where do I want to go?

RDMAv2

- iWARP overhead on RDMA Reads is depressing
- Better multi-tenancy
- I want a reliable RDMA write
- While RDMA has substantially lowered the cost of remote I/O, with the goal that "remote is the same as local", local I/O is terrible
 - Disk latency: ~1-10 msec
 - Volume Flash latency: ~200 usec 1 msec (95th percentile)

NVME to the rescue?

What have I learned?

I can be persistent (or stubborn)

Application have to go native RDMA

Technology solutions are tough to sell