
Network Adapter Flow

Steering

OFA 2012

Author: Tzahi Oved
Date: March 2012

Receive Steering Evolution

• The traditional Single Ring
– All ingress traffic to land on a single receive ring

• Kernel threads / DPC de-multiplexing
– Interrupt to de-mux ingress handling to multiple Kernel threads / DPCs

– Still use single HW ring

– May be aided with flow based HW hash

• Receive Side Scaling (RSS)
– Multiple RX rings and interrupts, typically per core

– Ingress flow hash based distribution to cores (QP->CQ->EQ->MSI->Core)

• Flow Steering

– Network adapters to support TCP/UDP/IP

transports flow steering

– Create as many receive rings as you need

– Adapter to steer ingress traffic to dedicated receive

rings according to 5-tuple classification rule

– Rich specification of flow to ring mapping

– And… do it from user mode too!

Receive Steering – Why?

• Network stack acceleration
– NUMA optimized

• Receive buffer is allocated close to the flow handling core

– Granular flow to core processing

• Ingress flows are directed to the matching receiving application core

– Don’t interrupt other cores

• OS/bypass, application ingress processing run on the same cache

– Receive filtering at hardware level

• User mode application acceleration
– TCP/UDP offload applications can steer its flows directly to

user mode

• Hijacking flows from kernel driver

– Building block of user mode stack

Implementation Overview

• Hierarchical Steering Capabilities
– Transport: Ethernet, RoCE, and FCoE / IB-UD

– Flow
• MAC/VLAN/priority/ET or d.QP

• IP protocol

• TCP/UDP ports

– RSS contexts, QPs, and SRQs

• Concurrent Support for Multiple steering Interfaces
– NIC Driver

• ethtool n-tuple settings

• RPS, RFS acceleration

• RSS

– Verbs Consumers (Kernel and User)
• RC, RoCE QPs

• UD, Raw Ethernet QPs

– FCoE

• Extends Naturally to Virtualized Environment (SR-IOV)
– Steering rules table is maintained per VF

Receive Flow Diagram

Service/ET/

IP proto

RSS

context

RSS

context

…

QP QP

Ring Ring Ring Ring Ring Ring

QP QP QP QP QP QP

SRQ

Exch

QP
Exch

QP

SRQ

RC/RoCE FCoE

Other

RC/RoCE

IPoIB/Ethernet Driver

User-space IB/Ethernet FCoE

N-tuple (ethtool)

RFS acceleration

IB UD / Raw

Ethernet
hit

hit

hit

miss

Flow

Table

Queuing Layer

RPS RFS &

RSS

context

QP

..

Flows and Priorities

• Steering rules ordered in a layered
hierarchy

– Domains
• ethtool

• Verbs (offloaded traffic)

• RFS, Netdev (network stack)

– Priority

• Multiple rules can exist in the same
domain+priority

– For different flows
• Insertion order applies, last wins

– For same flows
• Adapter to distribute ingress to

multiple rings

• Rule processing order
– Scan:

• (1) domain, (2) priority, (3) location

– First match takes

• Rule actions
– Steer to QP

• Multiple QPs are also allowed

– Drop

Domain Priority Pattern QP

ethtool

1 tcp flow f ring1

2 src+dst ip g ring2

3 dst ip h drop

Verbs & RDMA-
CM

1 tcp flow a qp1

1 tcp flow b qp2

1 udp mcast c qp2

2 tcp listener d qp3

2 tcp listener e qp3

Linux RFS

999 dst_ip i ring3

999 tcp flow j ring4

999 tcp flow k ring4

Net_dev 999 tcp flow l ring4

999 tcp flow m ring5

999 udp flow n ring6

Flows

Listeners

ethtool

rules

RFS

acceleration

attach_mcast

The API - Kernel Verbs

• flow_id ib_attach_flow(target_qp, domain, prio, flow_spec*)
– Attach QP target_qp to flow flow_spec in

• Domain domain

• Priority prio

– Attaching multiple QPs to the same flow+domain+prio allowed
• Adds the QPs to the same rule

• Replicates traffic to all QPs

• ib_detach_flow(flow_id)
– Detach QP target_qp from flow flow_spec in

• Domain domain

• Priority prio

– Rule is actually removed once all QPs are removed

• Flow specification: IPv4, IPv6, IB-UD/RoCE-UD
– Built from L2, L3, L4 protocol headers ordered filters and masks

– L2: DMAC, VID, ET

– L3: src IP, dst IP, protocol

– L4: src port, dst port

– IB/RoCE: dst QP, dst GID

Flow Filter Specification

• Extendible flow specification structure

• Preceded by a flow specification header

• struct flow_spec

– uint filters_num; // Number of filters describing the flow

– void *next_flow_spec; // pointer to next flow spec filter

• General flow specification structure:

– struct flow_spec_xx

• enum flow_spec_type // eth/arp/ipv4/ipv6/udp/tcp/ud

• struct flow_spec_xx // flow filter characteristics + mask

• void* next_flow_spec; // header specific flow

characteristics

Flow Filter Specification – An

Example
• struct flow_spec_eth

– enum flow_spec_type type;

– struct flow_spec_eth_filter filter;

– struct flow_spec_eth_filter filter_mask;

– void * next_flow_spec;

• struct flow_spec_eth_filter
– u8 d.addr[ETH_ALEN];

– u8 s.addr[ETH_ALEN];

– u16 protocol;

– u16 vid;

– u8 priority;

• The same for rest of header types:
– struct flow_spec_arp, struct flow_spec_arp_filter

– struct flow_spec_ipv4, struct flow_spec_ipv4_filter

– struct flow_spec_ipv6, struct flow_spec_ipv6_filter

– struct flow_spec_udp, struct flow_spec_udp_filter

– struct flow_spec_tcp, struct_ flow_spec_tcp_filter

– struct flow_spec_ud, struct flow_spec_ud_filter

User Verbs Provider Interface

• QP type: IBV_QPT_RAW_ETH, IBV_QPT_UD

• Similar to kernel (except for fixed domain =
UVERBS_DOMAIN)
– flow_handle ibv_attach_flow(target_qp, prio,

flow_spec*)

– ibv_detach_flow(flow_handle)

• Requires CAP_NET_RAW privileges

• Resources tracked by uverbs module
– Flows are tracked as process resource

– When terminates, all it’s remaining allocated flows are
detached

rdmacm Abstraction

• RDMA-CM will use rdma_cm_id identifier for flow
characteristic
– rdma_id is the “handle” to the target QP

• API calls:
– flow_handle rdma_attach_flow(flow_rdma_id, dest_rdma_id)

• flow_rdma_id includes enough info to build the flow_spec

• For L2 params:
– Extract local link layer params from local interface (IP address to

MAC+VLAN / GID+QP)

– Depending on rule type, extract remote link layer address through
neigh_lookup()

• Will use 3 rule priorities according to flow_rdma_id
– 1st (highest) - For 5-tuple rule (connect)

– 2nd - For 3-tuple rule (listen)

– 3rd – For 2-tuple rule (fragment receive)

• Use kernel verb ib_attach_flow() call with UVERBS_DOMAIN

– rdma_detach_flow(flow_handle)

nnet_device

Solution block diagram

libibverbs libibverbs

ib_verbs

mlx4_ib

mlx4_core

mlx4_en mlx4_en

librdmacm librdmacm

ethtool_ops, rfs

rdma_attach_flow

mlx4_attach_flow

attach_flow

attach_flow

User

Kernel

ipoib

rfs_accel

rss

Network stack

RFS/RPS

CMA CMA
Kernel Kernel

App

User Application

ethtool

utility

Quick Example

rdma_create_id(target_id, PS_UDP)

rdma_create_qp(target_id)
// Create target id->qp

rdma_create_id(source_id, PS_UDP)
// Create source flow spec, set protocol

rdma_bind_addr(source_id, 2-tuple of local IP address
+ port)

// Set rx flow spec characteristics through sockaddr

Or rdma_resolve_addr(source_id, 2 or 4 tuple)
// src sockaddr to point to local interface+port, dst sockaddr to
remote, protocol was set in create_id()

rdma_attach_flow(source_id, target_id)
// Insert our steering rule

Status and What’s Next

• Kernel API done

• User API under definition, implementation to

follow

• IPv4 support only for now

• Next

– Bitwise flow spec mask support

– IPv6

– Extend flow spec filters for L7 application level data

inspection

– TCP/UDP payload based steering

Thank You

