
IB ACM

InfiniBand Communication

Management Assistant (for Scaling)

Sean Hefty

1www.openfabrics.org

Problem

MPI job startup places a
huge burden on the fabric

Need to resolve addresses

Need to resolve paths

2www.openfabrics.org

Problem

Address Resolution

• ARP for address resolution

– ARP storm as all nodes try to discover other nodes

• Number of outstanding ARP requests = O(n2)

• May require pre-loading ARP cache before starting MPI job

– ARP replies require path record queries!

– ARP entries timeout across the subnet

• 1000 nodes  1 million ARP entries subnet wide

• 15 minute timeout  1000 entries timeout per second

• 24 hour timeout  12 entries timeout per second

• Even with a 24 hour ARP entry timeout, 7200 entries will

timeout during a 10 minute MPI run!

No easy solution, but workable in practice
3www.openfabrics.org

Problem

Path Resolution

• Centralized SA hinders scalability

• Number of outstanding queries = O(n2)

• Queries take minutes to complete

– If apps actually wait that long

– (Think of how many ARP entries just timed out!)

– Responses are not shared

Standard path record query mechanisms

simply do not work at scale

4www.openfabrics.org

Solution

IB ACM

• Addresses connection setup scalability issues

• Service / daemon providing:

• Address resolution

– ARP like protocol over IB multicast

– Names may be host names, IP addresses

• Route resolution

– Construct or query for path records

– Path record caching

5www.openfabrics.org

Solution

ACM for Address Resolution

• Wait, why duplicate ARP mechanisms?

• IPoIB issues path record queries as part of its ARP
implementation

• Store address and route data together
– Timeout data together

– Under certain conditions, we can resolve address and
route data without using SA queries

• We can obtain additional information about the
remote device
– E.g. maximum RDMA capabilities

• Restrict the number of outstanding address
resolution requests on the subnet to O(n)

6www.openfabrics.org

Solution

ACM for Route Resolution

• Is ACM a path record cache?

• Yes, but also an open source framework for

addressing scalability issues

– May be able to construct path records without

querying the SA

• Integrates with the librdmacm to make its use

transparent to the user

• Restricts the number of outstanding SA

queries to the subnet to O(n)

7www.openfabrics.org

Usage Model

• Recommended use is via librdmacm

– Requires ‘--with-ib_acm’ compile option

• Temporary requirement, will be removed once ACM is more

proven

– Falls back to normal resolution on failures

• Unable to contact local or remote ib_acm service

• Failure to resolve address or path information

• Small latency hit if librdmacm compiled with ACM support,

but service is not running

8www.openfabrics.org

Usage Model

• rdma_resolve_route

– All existing librdmacm apps can take advantage of

path record caching

– Path data is obtained from ib_acm service and kernel

is configured to use it

• ib_acm lookup is synchronous

– Requires kernel 2.6.33 (OFED 1.5.2) or newer

rdma_resolve_addr still ends up going

through ARP :P

9www.openfabrics.org

Usage Model

• rdma_getaddrinfo
– Supports address and route resolution

• Kernel support to make use of address resolution is pending
(AF_IB patch set)

– Can act as a simple (i.e. dumb) path record query
interface

• For apps that manually configure their QPs, but require path
records (specifically SL data) from the SA to avoid subnet
deadlock

– NODELAY flag
• Quick check against cached data

• Kicks off ACM resolution protocols in background

• Future lookups can find cached data
10www.openfabrics.org

Usage Model

• ib_acm may be accessed directly via a socket

interface

– Not recommended

– Protocol is defined by acm.h header file, but is not

documented

– librdmacm and ib_acme may be used as guides

11www.openfabrics.org

ACM Service

• Listens on TCP socket

• Simple request / reply protocol

• Input:

– Name, IP address, partial path record

– Destination and optional source

• Output:

– Set of path records

• Forward, reverse, alternates, CM paths

– Current implementation is 1

• Path must be fully reversible
12www.openfabrics.org

ACM Service Examples

src = [192.168.0.2]
dst = 192.168.0.3

Path record with
SGID / DGID

Path Record

Path Record

IB ACM

librdmacm
(rdma_getaddrinfo)

13www.openfabrics.org

ACM Operation

1. All ACM services join multicast groups

– Groups differ by pkey, rate, MTU, type of service

– All services must join 1 common group

– All traffic occurs on common group

2. ACM receives client request

3. Initiator broadcasts destination address on

common multicast group

4. All peer ACM services cache source data

14www.openfabrics.org

ACM Operation

5. Target service queries SA or constructs path

record to initiator

– See next slide

6. Target service responds with IB address

7. Initiator caches response address

8. Initiator queries SA or constructs path record to

target

9. ACM responds to client request

15www.openfabrics.org

ACM Operation

• Query SA for path data

– Required for certain fabric topologies to avoid

deadlock

• Construct path record based on common

multicast group supported by source and

destination

– Can be more efficient

– Once multicast groups are configured, avoids

querying the SA

16www.openfabrics.org

ACM Communication

• Defines application specific MADs

– Uses management class 44

• Allocates a UD QP

• Protocol is defined internal to ACM service

– Defined in internal header files

– Undocumented

17www.openfabrics.org

ACME

• Multi-purpose ACM test and configuration

application

• Verifies path data from ACM against SA path

records

– Can be used to validate if multicast resolution

protocol is usable

• May be used to pre-load cache

• Generate configuration files

18www.openfabrics.org

ACM Configuration

• Users may override default ACM configuration

options through the use of configuration files

• Default files can be generated using the

ib_acme utility

– acm_addr.cfg

• Contains local address data

• File will be unique per node

– acm_opts.cfg

• Contains ACM service options

• Likely the same across an entire cluster

19www.openfabrics.org

ACM Configuration

• Address assignments

– <device, port, pkey, name>

– Name is usually host name or IP address

– Pkey can be use for QoS

• Logging location and details

• Timeout / retry settings

• Outstanding requests limits

– To SA or peer ACM services

– Restricts the number of outstanding requests on the

subnet
20www.openfabrics.org

Work In Progress

• Validate concepts, performance, and scalability

– Initial testing is positive

• Support for dynamic changes is limited

– Handles port up/down events

– Does not respond to local IP address or hostname

changes

• Want to obtain path data progressively

– Pre-load cache using ib_acme

– Save / restore data between reboots

21www.openfabrics.org

Work In Progress

• Cached data not invalidated

– Must stop / restart service

– Proposal is to invalidate data based on CM timeouts

• Dependent on kernel changes

• QoS support controlled by SA

– Addresses / names map to specific pkey values

– A QoS scheme based on pkeys would work best

22www.openfabrics.org

Pending Work

AF_IB Support

• Allows direct IB addressing with transport

independent rdma_getaddrinfo interface

• Desired for librdmacm to make use of ACM

address resolution

• Removes librdmacm requirement for ipoib

• Provides greater flexibility moving forward to

support alternate paths

23www.openfabrics.org

Pending Work

MAD Snooping

• Invalidate cache based on local events

– CM timeouts, rejects

• Avoid registering for SA events

– Data is invalidated based on local events only

• Capture path data from other applications

– ipoib, srp, iser, rds, etc.

24www.openfabrics.org

