
Foundations of Virtualization

www.openfabrics.org 1

Author: Paul Grun
Date: April 5, 2011

1. Is there something about Channel I/O that makes it inherently a superior

solution for I/O virtualization?

2. What, if anything, is being done today to „virtualize‟ Channel I/O?

3. Is there something the OFA could/should be doing to capitalize on CI/O as

virtualization solution?

Server I/O Virtualization

At the High Level

• Server I/O virtualization

– virtualize server I/O resources allowing support for

multiple application containers

• Datacenter virtualization

– Flexible allocation of datacenter resources to

applications

4

Server I/O Virtualization

Lots of good reasons to do this.
Chiefly:
• improve server utilization
• server consolidation
• run unmodified guest OS
• create sandboxes…
• familiar compute and IT models

Naturally, there may be some downsides
too

• variable workloads across VMs makes
it hard to provision the server
platform

• incorrect mix of resources (compute,
memory, I/O) available on this
platform

V

M

M

…
VM

app

VM

app

Some well-known I/O virtualization models

• Emulation
– VMM emulates I/O devices in software.

• Direct Assignment

– Guest VM has direct access to physical hardware (vs a device emulated

in the VMM).

• Paravirtualization
– Hypervisor presents a non-traditional, (higher level ?)interface to the

guests

Emulated I/O

- VMM exactly emulates the physical device

- The guest VM runs a stock device driver

- Guest OS is (or can be) a stock, unmodified

OS

- Can present some performance issues

*OTS = Off the Shelf

VM

app

PCIe device
adapter

OTS* device

driver

VMM

Emulated

device

device

driver

Direct Assignment

- Device driver resides in virtual space.

- But PCIe devices deal in physical addresses

- VMM passthru driver performs v-p address

translation.

- Device adapter now knows the physical

location of the guest‟s buffer

- Higher performance than Emulation

Limitations:

-Requires one physical device per guest VM

- Requires VMM support for v-to-p address

translations and to handle interrupts.

A Physical Adapter is assigned to just one Guest VM

VM

app

PCIe
device
adapter

device

driver

VMM

Pass thru

driver

bfr

DMA
Engine

SR-IOV

- Each guest VM sees a virtual PCIe adapter -

a Virtual Function (VF)

-VMM manages the physical adapter through a

Physical Function (PF)

-The device adapter can support as many VMs

as it has VFs (currently set to 256 functions

per bus address.)

Limitations:

- Requires VMM support for v-to-p address

translations and to handle interrupts.

SR-IOV overcomes the „one adapter / one guest‟ limitation of direct assignment.

VM

app

PCIe device adapter

VMM

VF 1 VF 1
PF

VM

app…

…

An observation

All the above export some version of a PCIe device adapter to the

guest.

- Direct assignment – exports the true device adapter

- Emulation – exports a virtualized device adapter

-SR-IOV – exports a variation on a physical device adapter

These all seek to preserve the PCIe Device Adapter Model, with as

little change as possible

This seems to be about finding ways to share device adapters among guest VMs

Paravirtualized I/O

-Guest is not constrained to run native device drivers.

-This means that the hypervisor can present a “more

idealized” device abstraction to the guests

- Hypervisor provides a paravirtualized I/O service

- Hypervisor programs device adapter‟s DMA engines

with appropriate physical addresses

- Paravirtualization removes the „hard to virtualize‟ x86

instructions from the guest OS.

VMapp

device
adapter

I/O

client

hypervisor

I/O

provider

device

driver

KVM/virtio is an excellent example.

KVM example

Virtual

Switch

TCP
Root OS

Guest OS

App

Eth

TCP

Guest OS

App

TCP

10GbE

NIC

Eth

VM

Just to state the obvious…

www.openfabrics.org 12

app

device
adapter

privileged
entity

- PCIe device adapters operate in

the physical realm. They know how

to DMA data into physical memory

- Apps, on the other hand, live in a

virtual realm

- This means that a privileged entity

with knowledge of virtual to physical

mappings must control the PCIe

device adapter

virtual

physical

VM

Channel I/O

app

Channel
adapter

An RDMA Channel Adapter (IB HCA or iWARP rNIC)

does the v-p-v translations automatically

This is exactly what channel I/O does best

- exports a channel interface directly to an

application‟s virtual space

For virtualization, should we be exposing a higher

level channel interface?

Has anybody explored creating a paravirtualized I/O

message passing service based on OFED?

OFED
Stack

Virtualizing what?

www.openfabrics.org 14

Common I/O virtualization models focus

on sharing an I/O adapter device

VM

physical
adapter

VM

Channel I/O-based virtualiztion is a

mechanism for delivering I/O messages to

a virtual space

app app

CA CA

A couple of issues

• CA support for non-unique QP spaces

– Allow QP numbers to be freely assigned within each

VM container

• Fabric management – QP0

• Connection management – QP1

• Addressing – identifying a VM

Non-unique QP space

Channel
adapter

VM VM VM

QP2, QP3… QP2, QP3…

Prefer that the adapter‟s QP space be non-unique

Fabric management

Channel
adapter

VM VM VM

QP2, QP3… QP2, QP3…

Fabric Management – (this one‟s pretty easy)

Hypervisor

QP0

General Services Interface

Channel
adapter

VM VM VM

QP1, QP2… QP1, QP2…

Each VM has a copy of QP1.

Inbound packets are steered to the VM via the GID

(note: GRH is currently optional for Unreliable Datagram service)

Hypervisor

QP0

QP1, QP2…

Summary

I/O device virtualization:

– share valuable adapter hardware

– enable unmodified OS to run in the guest

– sandboxes, private execution environments…

Channel I/O virtualization:

– flexible/agile data centers

– VM migration

– all the usual RDMA goodnesses (latency, CPU util…)

Thank you

