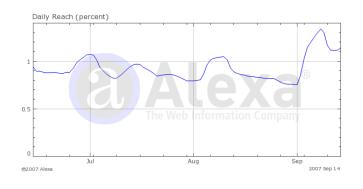
NFS-RDMA for Internet Search


in the searches: vanessa hudgens, pavarotti, britney spears, ipod touch, steve fossett

Speaker: Dr. Ekechi Nwokah Alexa Internet

Alexa Internet: Who we are

- Wholly owned Amazon.com subsidiary
 - Best known for "traffic rankings"

- Search: our focus
 - Alexa Search rapidly improving
 - Competitive with leading search providers
 - Alexa Search increasingly used on Amazon.com and other sites
 - Higher traffic, more exposure
 - Need faster, cheaper, more scalable storage infrastructure

Alexa Internet: A storage history

Таре

External SCSI with 100Mb Ethernet

DAS with 1Gb Ethernet

Where to go from here?

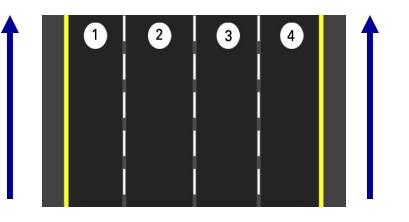
Challenge

- 240TB of crawled web data
 - Homegrown text database
- Existing infrastructure cumbersome
 - Consolidate Hardware
 - Reduce CapEx/OpEx
 - Achieve Better ROI
- Large data mining apps
 - Data is write-once, read many
 - Strictly bi-modal access payloads
 - Data VERY cache-unfriendly
 - Highly Parallel

Storage Decision

- Solicited proposals from leading vendors
 - Expensive
 - Don't need large feature set
 - Price/Performance is key metric for Alexa

- Decided on home-grown/open-source solution
 - Most cost effective solution
 - Most scalable
 - Had dedicated storage/kernel people



Motivations

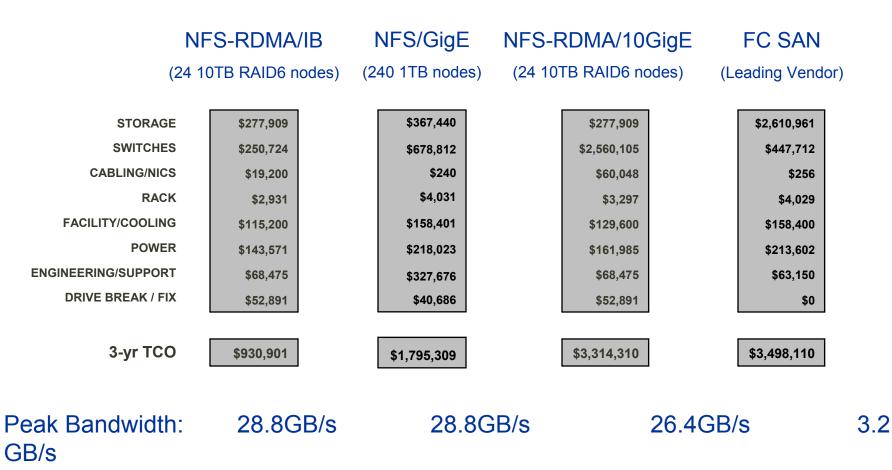
Motivations for Infiniband

- Performance
- Hardware consolidation needs big pipes
- Line rate scalability
- Low Latency
- Lowest cost at scale
- OFED achieving stability

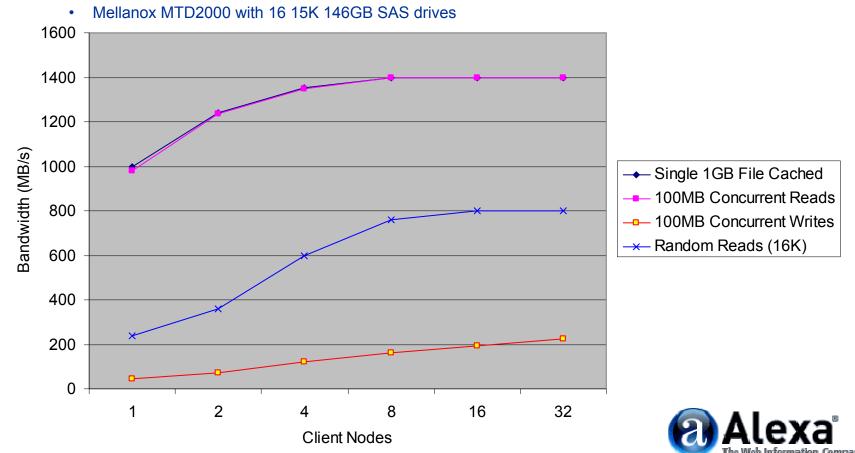
More Data Lanes

Motivations for NFS-RDMA

- Performance: 630MB/s/SDR, 1.05GB/s/DDR
- Mostly internal apps (5 9's not required)
- Our apps know what to do with NFS mounts
- Mostly read only (low risk)
- Cost (free)


Lower Cost

Bottom Line: What's the ROI?


(240 TB Configuration)

Early Testing

- Formed partnership with vendors as "alpha" customer
 - DDR Infiniband links
 - 32 NFS clients running NFS-RDMA (NFSv3) client version 7 on Linux 2.6.18.5
 - 1 NFS server running NFS-RDMA server version 6 on Linux 2.6.17:

Production Server

- "NFS-RDMA" ready nodes
 - Enough disks to fill dual "NFS-RDMA over IB" pipes (2 x 630MB/s)
 - Dual SDR over DDR (cheaper and better performance from server)
- Consolidation
 - Can reasonably put 24 drives in chassis
 - 24 SATA drives: 1100MB/s peak
 - 2 3ware RAID6 cards: 1400MB/s peak

- Motherboard considerations
 - 2 PCI-e x4 to accommodate RAIDs (2GB/s peak)
 - PCI-e x8 to accommodate dual port HCA (1.4 GB/s peak)
- RAID card/Drive firmware testing
 - Tested various drive and RAID firmware versions for performance
 - 3ware 9650 maxed out at 520MB/s with RAID6, XFS, 500GB SATA drives

Early Experiences

- 2.6.17 Performance issues/Stability issues
 - Weird hangs on client ("ls", etc.)
 - Mount would timeout due to inactivity, remount would hang
- 2.6.18 Mellanox SDK released
 - Testing and Performance Measurements
 - Worked with Mellanox to test and debug
 - Alexa IT Dept. moved to CentOS5
 - We modified SDK build scripts to support CentOS
 - Found major bug (Server Transport Lock)
 - Error from client caused server to permanently lock RDMA transport
 - Worked with developers to test and fix bug

Early Challenges

- NFS has problems with readahead
 - RAID cards don't do well without readahead
 - Linux readahead code needs surgery
 - Patched kernel
- IB cabling was a problem for hardware staff
 - Cables are heavy and prone to dislodge
 - New optical cables should solve this problem
- NFS-RDMA means custom kernel
 - Separate management policies and procedures for IB cluster
 - Adds cost and complexity for IT staff
- Wrote thin middleware layer
 - Parallelization, load balancing and namespace management

Current Status and Performance

- Running in production
 - Used by data mining applications
 - Also serving as backend for Alexa Search
 - Mounted read-only
 - Data written over GigE on back end
 - 4 server nodes, 30 clients
 - Will start scaling out soon

- Read Performance: 2.5GB/s uncached
 - Compare with NFS over IPoIB: 1.25GB/s uncached
- Tuning necessary for good performance
 - Linux scheduler choice
 - NFS mount options: rsize, wsize
 - Block size, access patterns, drive options, etc.

The New Data Center

- Multi-core CPUs, Large RAM footprints
- Large and Fast Remote Storage
- Infiniband or 10GigE as interconnect
- Blades and Diskless Nodes
- Virtual/Restartable Machines
- Power!!

- We want our search to be better, cheaper, and faster
 - Must continue to be innovative in architecting our infrastructure
 - IB is best choice right now for storage networking technology
 - NFS-RDMA is conceptually simple...it's just NFS

Conclusion and Next Steps

- Conclusion
 - NFS-RDMA with IB was well worth the effort!!
 - 2.5GB/s for under \$60K
 - Best choice for price/performance, ease-of-use, TCO, etc.
 - 2x improvement over NFS with IPoIB
 - Mellanox SDK a good first step to production environment
 - Linux kernel still needs work
 - Will run custom kernel for the forseeable future
- Next Steps
 - R/W NFS-RDMA servers in next few weeks
 - More Linux surgery
 - Scaling out (Global Namespace)
 - May augment Alexa middleware
 - Looking at pNFS
 - Considering Lustre
 - Integrate NFS-RDMA with Xen

Contributors

- We would like to thank the following people for their efforts:
 - Tom Tucker (Open Grid Computing)
 - Thad Omura, Fred Dickely, Vu Pham, Todd Wilde, Gilad Shainer, Eyal Waldman, Mehran Entazari, Graham Smith (Mellanox Technologies)
 - Jon Lewis, Chris Watson, Matt Jay (Silicon Mechanics)
 - Matt Dinola, Eric Dube (Voltaire)
 - Tom Talpey (Network Appliance)
 - Fengguang Wu (University of Science & Technology of China)

