
© 2013 Open Fabrics Alliance, Inc. 4/18/2013 1

RDMA programming concepts

Robert D. Russell <rdr@iol.unh.edu>

InterOperability Laboratory &

Computer Science Department

University of New Hampshire

Durham, New Hampshire 03824, USA

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 2

RDMA benefits for user applications

High throughput

Low latency

High messaging rate

Low CPU utilization

Low memory bus contention

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 3

RDMA Technologies

InfiniBand – (44.8% of top 500 supercomputers)

– SDR 4x – 8 Gbps

– DDR 4x – 16 Gbps

– QDR 4x – 32 Gbps

– FDR 4x – 54 Gbps

iWarp – internet Wide Area RDMA Protocol

– 10 Gbps

– 40 Gbps

RoCE – RDMA over Converged Ethernet

– 10 Gbps

– 40 Gbps

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 4

How users can access RDMA

Via application library – MPI, Lustre, NFS_RDMA

– embed RDMA into library, so user-level API is unchanged

Via API like “normal” socket I/O – SDP, rsockets

– socket(), connect(), send(), recv(), poll(), close()

Via API like “normal” I/O – GridFTP-XIO

– open(), read(), write(), poll(), close()

Explicitly program with OpenFabrics Software (verbs)

– ibv_post_recv(), ibv_post_send(), ibv_poll_cq()

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 5

Layering with user level libraries

User Application

OFS Verbs API

Physical

Data Link

Network

Transport

IWARP “RNIC” RoCE “NIC” InfiniBand “HCA”

RDMAP

DDP

MPA

TCP

IP

IB Transport API

IB Transport

IB Network

Ethernet MAC & LLC IB Link

Ethernet PHY IB PHY

 OSI

Layers

CA

User level libraries, such as MPI

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 6

Layering directly to OFS verbs

User Application

OFS Verbs API

Physical

Data Link

Network

Transport

IWARP “RNIC” RoCE “NIC” InfiniBand “HCA”

RDMAP

DDP

MPA

TCP

IP

IB Transport API

IB Transport

IB Network

Ethernet MAC & LLC IB Link

Ethernet PHY IB PHY

 OSI

Layers

CA

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 7

RDMA and TCP similarities

Both utilize the client-server model

Both require a connection for reliable transport

Both provide a reliable transport mode

– TCP provides a reliable in-order sequence of bytes

– RDMA provides a reliable in-order sequence of messages

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 8

RDMA and TCP differences

“zero copy” – RDMA transfers data directly

from user virtual memory on one node to user

virtual memory on another node, TCP copies

into/out of system buffers on both nodes

“kernel bypass” – RDMA involves no kernel

intervention during data transfers, TCP does

asynchronous operation – RDMA does not

block threads during I/O operations, TCP does

message oriented – RDMA transfer preserves

message boundaries, TCP does not

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 9

“Normal” TCP/IP socket access

Byte streams – require App to delimit/recover

message boundaries (if desired)

Synchronous – send(), recv() block until data copied

– O_NONBLOCK, MSG_DONTWAIT are not asynchronous,

they are “try” and get error

 send() and recv() are paired

– both sides must participate in the transfer

 System copies data into “hidden” system buffers

– order, timing of send() and recv() are irrelevant

– user memory accessible immediately before and

immediately after each send() and recv() call

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 10

virtual

memory

allocate

add to tables

sleep

wakeup access

TCP

buffers

metadata

control

copy

data packets

ACKs

TCP RECV()

blocked

status

recv()

USER OPERATING SYSTEM NIC WIRE

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 11

allocate

access

metadata

control

data packets

ACK

RDMA RECV()

status

recv()

USER CHANNEL ADAPTER WIRE

register

poll_cq()

recv queue

completion queue

. . .

. . .

virtual

memory

parallel

activity

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 12

RDMA access model

Messages – preserve App's message boundaries

Asynchronous – no blocking during a transfer, which

– starts when metadata added to “work queue”

– finishes when status available in “completion queue”

 1-sided (unpaired) and 2-sided (paired) transfers

 No data copying into system buffers

– order, timing of send() and recv() are relevant

• recv() must be waiting before issuing send()

– memory involved in transfer should not be touched by

program between start and completion of transfer

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 13

Kernel bypass

Program uses queues to interact directly with CA

Queue Pair – user enqueues work for CA

– work request – data structure from user describing transfer

– send queue – holds work requests to CA that send data

– recv queue – holds work requests to CA that receive data

Completion Queue – CA enqueues status to user

– work completion – data structure from CA containing

transfer result status

– one completion queue can hold work completions for both

send and receive transfers

– can also have separate completion queues for each

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 14

Transfer and completion queues

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 15

Verbs interface to queues

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 16

Asynchronous Data Transfer

Posting

– term used to mark the initiation of a data transfer

– user adds a “work request” to a “work queue”

Completion

– term used to mark the end of a data transfer

– user removes a “work completion” from a “completion

queue”

Important note:

– between posting and completion the state of user

memory involved in the transfer is undefined and

should NOT be changed or used by the user program

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 17

Posting – Completion

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 18

RDMA transfer types

send/recv – similar to “normal” TCP sockets

– each send on one side must match a recv on other side

RDMA_WRITE – only in RDMA

– “pushes” data into remote virtual memory

RDMA_READ – only in RDMA

– “pulls” data out of remote virtual memory

Same verbs and data structures used by all types

‒ parameter values and field values depend on type

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 19

RDMA send-recv data transfer

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 20

send-recv similarities with sockets

Sender must issue listen() before client issues

connect()

Both sender and receiver must actively

participate in all data transfers

– sender must issue send() operations

– receiver must issue recv() operations

Sender does not know remote receiver's virtual

memory location

Receiver does not know remote sender's virtual

memory location

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 21

send-recv differences with sockets

“normal” TCP/IP transfers are buffered

– time order of send() and recv() on each side is irrelevant

RDMA transfers are not buffered

– recv() must be posted by receiver before send() can be

posted by sender

– not doing this results in a few retries, then fatal error

“normal” TCP/IP has no notion of “memory

registration”

RDMA requires that all memory participating in a

transfer be “registered”

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 22

User memory must be registered

So kernel can “pin” or “lock” it into physical memory

– so user memory can not be paged in/out during transfer

– so CA can obtain physical to virtual mapping

• CA, not OS, does mapping during a transfer

• CA, not OS, checks validity of the transfer

 So CA can create “keys” linking memory, process

– supplied by user as part of every transfer

– allow user to control access rights of a transfer

– allow CA to find correct mapping in a transfer

– allow CA to verify access rights in a transfer

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 23

ping-pong using send-recv

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 24

3 phases in reliable connections

Setup Phase

– obtain, convert addressing information

– create, configure local endpoints for communication

– setup local memory for use in transfers

– establish connection with remote side

Use Phase

– actually transfer data to/from remote side

Break-down Phase

– basically “undo” setup phase

– close connection, free memory, free other resources

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 25

Client setup phase
TCP RDMA

1. process command-line options process command-line options

2. convert DNS name and port no.

 getaddrinfo()

convert DNS name and port no.

rdma_getaddrinfo()

3. create local end point

 socket()

create local end point

rdma_create_ep()

4. create completion queue to get CA status

ibv_create_cq()

5. create queue pair to give CA xfer metadata

rdma_create_qp()

6. allocate user virtual memory

 malloc()

allocate user virtual memory

malloc()

7. register user virtual memory with CA

rdma_reg_msgs()

8. create connection with server

 connect()

create connection with server

rdma_connect()

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 26

Client use phase
TCP RDMA

9. mark start time for statistics mark start time for statistics

10. start of transfer loop start of transfer loop

11. post receive to catch agent's pong data

rdma_post_recv()

12. transfer ping data to agent

 send()

post send to start transfer of ping data to agent

rdma_post_send()

13. receive pong data from agent

 recv()

wait for both send and receive to complete

ibv_poll_cq()

14. optionally verify pong data ok

 memcmp()

optionally verify pong data ok

memcmp()

15. end of transfer loop end of transfer loop

16. mark stop time and print statistics mark stop time and print statistics

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 27

Client breakdown phase
TCP RDMA

17. break connection with server

 close()

break connection with server

rdma_disconnect()

18. deregister user virtual memory

rdma_dereg_mr()

19. free user virtual memory

 free()

free user virtual memory

free()

20. destroy queue pair

rdma_destory_qp()

21. destroy completeion queue

ibv_destroy_cq()

22. destroy local end point

rdma_destroy_ep()

23. free getaddrinfo resources

 freeaddrinfo()

free rdma_getaddrinfo resources

rdma_freeaddrinfo()

24. “unprocess” command-line options “unprocess” command-line options

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 28

Server participants

Listener

– waits for connection requests from client

– gets new system-provided connection to client

– hands-off new connection to agent

– never transfers any data to/from client

Agent

– creates control structures to deal with one client

– allocates memory to deal with one client

– performs all data transfers with one client

– disconnects from client when transfers all finished

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 29

Listener setup and use phases
TCP RDMA

1. process command-line options process command-line options

2. convert DNS name and port no.

 getaddrinfo()

convert DNS name and port no.

rdma_getaddrinfo()

3. create local end point

 socket()

create local end point

rdma_create_ep()

4. bind to address and port

 bind()

5. establish socket as listener

 listen()

establish socket as listener

rdma_listen()

6. start loop start loop

7. get connection request from client

 accept()

get connection request from client

rdma_get_request()

8. hand connection over to agent hand connection over to agent

9. end loop end loop

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 30

Listener breakdown phase
TCP RDMA

10. destroy local endpoint

 close()

destroy local endpoint

rdma_destroy_ep()

11. free getaddrinfo resources

 freegetaddrinfo()

free getaddrinfo resources

rdma_freegetaddrinfo()

12. “unprocess” command-line options “unprocess” command-line options

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 31

Agent setup phase
TCP RDMA

make copy of listener's options

2. create completion queue to get CA status

ibv_create_cq()

3. create queue pair to give CA xfer metadata

rdma_create_qp()

4. allocate user virtual memory

 malloc()

allocate user virtual memory

malloc()

5. register user virtual memory with CA

rdma_reg_msgs()

finalize connection with client

rdma_accept()

1. make copy of listener's options

6. post first receive of ping data from client

rdma_post_recv()

7.

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 32

Agent use phase
TCP RDMA

8. mark start time for statistics mark start time for statistics

9. start of transfer loop start of transfer loop

10. wait to receive ping data from client

 recv()

wait to receive ping data from client

ibv_poll_cq()

12. transfer pong data to client

 send()

post send to start transfer of pong data to client

rdma_post_send()

13. wait for send to complete

ibv_poll_cq()

14. end of transfer loop end of transfer loop

15. mark stop time and print statistics mark stop time and print statistics

11. post next receive for ping data from client

rdma_post_recv()

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 33

Agent breakdown phase
TCP RDMA

16. break connection with client

 close()

break connection with client

rdma_disconnect()

17. deregister user virtual memory

rdma_dereg_mr()

18. free user virtual memory

 free()

free user virtual memory

free()

19. destroy queue pair

rdma_destory_qp()

20. destroy completeion queue

ibv_destroy_cq()

21. destroy local end point

rdma_destroy_ep()

22. free copy of listener's options free copy of listener's options

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 34

ping-pong SEND/RECV performance

InfiniBand QDR 4x, through a switch

Client

– round-trip-time 15.7 microseconds

– user CPU time 100% of elapsed time

– kernel CPU time 0% of elapsed time

Server

– round-trip time 15.7 microseconds

– user CPU time 100% of elapsed time

– kernel CPU time 0% of elapsed time

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 35

How to reduce 100% CPU usage

Cause is “busy polling” to wait for completions

– in tight loop on ibv_poll_cq()

– burns CPU since most calls find nothing

Why is “busy polling” used at all?

– simple to write such a loop

– gives very fast response to completions

– (i.e., gives low latency)

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 36

”busy polling” to get completions

1. start loop

2. ibv_poll_cq() to get any completion in queue

3. exit loop if a completion is found

4. end loop

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 37

How to eliminate “busy polling”

Cannot make ibv_poll_cq() block

– no flag parameter

– no timeout parameter

How to eliminate busy polling loop and just wait?

Solution is “wait-for-notify” event mechanism

– ibv_req_notify_cq() - tell CA to send a notify “event”

when next WC enters CQ

– ibv_get_cq_event() - blocks until gets notify “event”

– ibv_ack_cq_event() - acknowledges notify “event”

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 38

Backflows from CA to user

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 39

Backflows with completion channel

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 40

”wait-for-notify” to get completions

1. start loop

2. ibv_poll_cq() gets any completion in CQ

3. exit loop if completion is found

4. ibv_req_notify() enables CA to send event on next

completion added to CQ

5. ibv_poll_cq() gets any completion between 2&4

6. exit loop if completion is found

7. ibv_get_cq_event() blocks until CA sends event

8. ibv_ack_cq_events() acknowledges event

9. end loop

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 41

ping-pong SEND/RECV

performance with “wait-for-notify”

Client

– round-trip-time 21.1 microseconds – up 34%

– user CPU time 9.0% of elapsed time – was 100%

– kernel CPU time 9.1% of elapsed time – was 0%

– total CPU time 18% of elapsed time – down 82%

Server

– round-trip time 21.1 microseconds – up 34%

– user CPU time 14.5% of elapsed time – was 100%

– kernel CPU time 6.5% of elapsed time – was 0%

– total CPU time 21% of elapsed time – down 79%

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 42

rdma_xxxx “wrappers” around

ibv_xxxx

rdma_get_recv_comp() - wrapper for notify loop

on receive completion queue

rdma_get_send_comp() - wrapper for notify loop

on send completion queue

rdma_post_recv() - wrapper for ibv_post_recv()

rdma_post_send() - wrapper for ibv_post_send()

rdma_reg_msgs() - wrapper for ibv_reg_mr for

SEND/RECV

rdma_dereg_mr() - wrapper for ibv_dereg_mr()

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 43

where to find “wrappers”, prototypes,

data structures, etc.

/usr/include/rdma/rdma_verbs.h

– contains rdma_xxxx “wrappers”

/usr/include/infiniband/verbs.h

– contains ibv_xxxx verbs and all ibv data structures,

defines, types, and function prototypes

/usr/include/rdma/rdma_cm.h

– contains rdma_yyyy verbs and all rdma data

structures, etc. for connection management

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 44

Transfer choices

TCP/UDP transfer operations

– send()/recv() (and related forms)

RDMA transfer operations

– SEND/RECV similar to TCP/UDP

– RDMA_WRITE “push” to remote virtual memory

– RDMA_READ “pull” from remote virtual memory

– RDMA_WRITE_WITH_IMM “push” with notification

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 45

RDMA_WRITE operation

Very different concept from normal TCP/IP

Very different concept from RDMA Send/Recv

Only one side is active, other is passive

Active side (requester) issues RDMA_WRITE

Passive side (responder) does NOTHING!

A better name would be “RDMA_PUSH”

– data is “pushed” from active side’s virtual memory into

passive side’s virtual memory

– passive side issues no operation, uses no CPU cycles,

gets no indication “push” started or completed

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 46

RDMA_WRITE data flow

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 47

Differences with RDMA Send

Active side calls ibv_post_send()

– opcode is RDMA_WRITE, not SEND

– work request MUST include passive side's virtual

memory address and memory registration key

Prior to issuing this operation, active side MUST

obtain passive side's address and key

– use send/recv to transfer this “metadata”

– (could actually use any means to transfer “metadata”)

Passive side provides “metadata” that enables

the data “push”, but does not participate in it

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 48

Similarities with RDMA Send

Both transfer types move messages, not streams

Both transfer types are unbuffered (“zero copy”)

Both transfer types require registered virtual

memory on both sides of a transfer

Both transfer types operate asynchronously

– active side posts work request to send queue

– active side gets work completion from completion queue

Both transfer types use same verbs and data

structures (although values and fields differ)

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 49

RDMA_READ operation

Very different from normal TCP/IP

Very different from RDMA Send/Recv

Only one side is active, other is passive

Active side (requester) issues RDMA_READ

Passive side (responder) does NOTHING!

A better name would be “RDMA_PULL”

– data is “pulled” into active side’s virtual memory

from passive side’s virtual memory

– passive side issues no operation, uses no CPU

cycles, gets no indication “pull” started or completed

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 50

RDMA_READ data flow

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 51

Ping-pong using

RDMA_WRITE/READ

Client is active side in ping-pong loop

– client posts RDMA_WRITE out of ping buffer

– client posts RDMA_READ into pong buffer

Server agent is passive side in ping-pong loop

– does nothing

Server agent must send its buffer address and

registration key to client before the loop starts

Client must send agent a message with total

number of transfers after the loop finishes

– otherwise agent has no way of knowing this number

– agent needs to receive something to know when to finish

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 52

Ping-pong using

RDMA_WRITE/READ

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 53

Client ping-pong transfer loop

start of transfer loop

ibv_post_send() of RDMA_WRITE ping data

ibv_poll_cq() to wait for RDMA_WRITE completion

ibv_post_send() of RDMA_READ pong data

ibv_poll_cq() to wait for RDMA_READ completion

optionally verify pong data equals ping data

end of transfer loop

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 54

Agent ping-pong transfer loop

ibv_post_recv() to catch client's “finished”

message

wait for completion of “finished” from client

‒ use “busy polling” or “wait-for-notify”

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 55

ping-pong RDMA_WRITE/READ

performance with “wait-for-notify”

Client

– round-trip-time 14.3 microseconds – down from 21.1

– user CPU time 26.4% of elapsed time – up from 9.0%

– kernel CPU time 3.0% of elapsed time – down from 9.1%

– total CPU time 29.4% of elapsed time – up from 18%

Server

– round-trip time 14.3 microseconds – down from 21.1

– user CPU time 0% of elapsed time – down from 14.5%

– kernel CPU time 0% of elapsed time – down from 6.5%

– total CPU time 0% of elapsed time – down from 21.0%

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 56

Improving performance further

All postings discussed so far generate completions

– required for all ibv_post_recv() postings

– optional for ibv_post_send() postings

User controls completion generation with

IBV_SEND_SIGNALED flag in ibv_post_send()

– supplying this flag always generates a completion for that

posting

– not setting this flag generates a completion for that

posting only in case of an error – a successful transfer

generates no completion

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 57

How client benefits from this feature

RDMA_READ posting follows RDMA_WRITE

RDMA_READ must finish after RDMA_WRITE

– due to strict ordering rules in standards

Therefore, don't need to do anything with

RDMA_WRITE completion

– completion of RDMA_READ guarantees

RDMA_WRITE transfer succeeded

– error on RDMA_WRITE transfer will generate a

completion

Therefore we can send RDMA_WRITE

unsignaled and NOT wait for its completion

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 58

Client unsignaled transfer loop

start of transfer loop

ibv_post_send() with unsignaled RDMA_WRITE

– generates no completion (except on error)

do not wait for RDMA_WRITE completion

ibv_post_send() of RDMA_READ pong data

ibv_poll_cq() to wait for RDMA_READ completion

‒ will get RDMA_WRITE completion on error

optionally verify pong data equals ping data

end of transfer loop

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 59

ping-pong RDMA_WRITE/READ

performance with unsignaled, notify

Client

– round-trip-time 8.3 microseconds – down 42%

– user CPU time 28.0% of elapsed time – up from 26.4%

– kernel CPU time 2.8% of elapsed time – down from 3.0%

– total CPU time 30.8% of elapsed time – up from 29.4%

Server

– round-trip time 8.3 microseconds – down 42%

– user CPU time 0% of elapsed time – unchanged

– kernel CPU time 0% of elapsed time – unchanged

– total CPU time 0% of elapsed time – unchanged

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 60

Ping-pong performance summary

Rankings for Round-Trip Time (RTT)

 8.3 usec unsignaled RDMA_WRITE/READ with wait for notify

14.3 usec signaled RDMA_WRITE/READ with wait for notify

15.7 usec signaled SEND/RECV with busy polling

21.1 usec signaled SEND/RECV with wait for notify

Rankings for client total CPU usage

18.0% signaled SEND/RECV with wait for notify

29.4% signaled RDMA_WRITE/READ with wait for notify

30.8% unsignaled RDMA_WRITE/READ with wait for notify

100% signaled SEND/RECV with busy polling

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 61

Multicast concept

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 62

RDMA Multicast

 Only possible with IB and RoCE, not iWARP

 Single SEND is delivered to RECV in multiple

destinations – switches make copies as necessary

carefully avoiding duplicate deliveries

 Only possible in Unreliable Datagram (UD) mode

‒ only RDMA SEND/RECV operations allowed

‒ message size limited to underlying MTU size

 Based on concept of multicast groups

‒ communication model is peer-to-peer

‒ any node can SEND to entire group at any time

‒ messages are lost on nodes with no RECV posted

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 63

RDMA Multicast Groups

 Created and managed by subnet manager

‒ utilizes IPv6 multicast addresses

 Any program can join a group at any time

‒ rdma_join_multicast()

‒ attaches existing queue pair to multicast group

 Once joined, program can leave group at any time

‒ rdma_leave_multicast()

‒ detaches existing queue pair from multicast group

 Only possible in Unreliable Datagram (UD) mode

‒ only Send/Recv operations allowed

‒ both sides must actively participate in data transfers

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 64

Restriction on Multicast Groups

 Maximum MTU for an active group is decided

when first CA joins the group

– size of 1st CA's active MTU becomes group's MTU

 CAs with smaller active MTU sizes cannot join an

active group

– if 1st MTU is 1024, others can be 1024, 2048, 4096

– if 1st MTU is 2048, others can be 2048, 4096

– if 1st MTU is 4096, others can be 4096 only

 Maximum MTU for an active group is unchanged

as long as group contains at least 1 member

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 65

Multicast Publish-Subscribe

 Publisher maintains data repository, periodically

updates and posts it to multicast group using

ibv_post_send()

 Subscriber posts 2 or more ibv_post_recv()

 When an ibv_post_recv() completes:

‒ post another ibv_post_recv() into another buffer

‒ use published data from completed buffer

 Subscribers (and publishers) can join or leave

multicast group at any time

‒ no indication given to other group members

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 66

OpenFabrics software training

 2-day OFA Training Class

‒ “Writing Application Programs for RDMA Using OFA

Software”

‒ www.openfabrics.org/resources

‒ taught periodically at the University of New Hampshire

InterOperability Laboratory

‒ can also be taught at a company site

‒ contact Rupert Dance at rsdance@soft-forge.com

http://www.openfabrics.org/resources

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 67

QUESTIONS?

© 2013 OpenFabrics Alliance, Inc. 4/18/2013 68

THANK YOU!

