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Extended Sockets API (ES-API) 

Published by The Open Group in 2005 

– opengroup.org/bookstore/catalog/c050.htm 

 

Defines 2 major new extensions to “normal” sockets 

– memory registration for zero-copy I/O 

– event queues for asynchronous I/O 

 

Designed to give programmer access to RDMA 
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EXS Goals 

Expose RDMA features to programmer 

– do not totally hide RDMA from programmer 

– provide a more convenient interface than verbs 

Extend well-known sockets API 

– “normal” sockets are inadequate for direct RDMA use 

– add a few new functions and data types 

– repurpose many existing functions and data types 

Target audience 

– new applications intended for RDMA 

– porting existing applications requires source code changes 
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UNH-EXS 

Based on Open Group's ES-API 

– with additional extensions in order to run entirely in user 

space (because ES-API is expected to be integrated into 

existing kernel sockets) 

Runs on InfiniBand, iWARP, and RoCE 

Provides both SOCK_SEQPACKET and 

SOCK_STREAM connections using RC only 

Library designed for use by user threads in Linux 

Implemented entirely with user-space OFS verbs 

Requires no change to OFS or Linux 
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UNH-EXS stack 
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EXS event queues 

Extensions to deal with asynchronous events 

New “event queue” and “event” data structures 

– exs_qhandle_t 

– exs_event_t 

New queue manipulation functions 

– exs_qcreate() - creates new event queue 

– exs_qdelete() - deletes existing event queue 

– exs_qdequeue() - removes events from existing event queue 

– exs_qmodify() - modifies existing event queue 

– exs_qstatus() - returns event queue attributes 
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EXS event queue usage 

send(), recv(), accept(), connect(), close() have 

extended versions: exs_send(), exs_recv(), etc. 

‒ all these extended operations just start an action 

‒ control returns immediately to user 

‒ operation proceeds in parallel to user code 

Extended operations have extra parameters, 1st is 

– exs_qhandle_t parameter required to designate event queue 

When I/O operation completes, EXS library adds 

– exs_event_t containing status to designated event queue 
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EXS memory registration 

 Extensions to deal with registered memory 

 

New “memory region” data structure 

– exs_mhandle_t 

 

Two new registration functions 

– exs_mregister() - creates new exs_mhandle_t by 

registering user-defined virtual memory 

– exs_mderegister() - destroys existing exs_mhandle_t  

by unregistering its memory region 
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EXS memory region usage 

 New exs_send() and exs_recv() functions 

designate “memory region” with additional 

parameter 

‒ exs_mhandle_t result of previous registration 

 

Normal address and length parameters must 

refer to memory entirely within designated 

“memory region”    
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Parameters to exs_send() 

Four “normal socket” parameters 

– fd – socket descriptor 

– address – of data to be sent 

– length – number of data bytes to send 

– flags 

 

Three new “extension” parameters 

– event_queue – for posting completion event 

– request_id – user-defined transaction id 

– memory_region – must cover all data bytes 
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Parameters to exs_recv() 

Four “normal socket” parameters 

– fd – socket descriptor 

– address – of where to put received data 

– length – maximum number of data bytes to receive 

– flags 

 

Three new “extension” parameters 

– event_queue – for posting completion event 

– request_id – user-defined transaction id 

– memory_region – must cover all data bytes 
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How EXS maps transfers onto verbs 

exs_recv() issues RDMA SEND to “advertise” 

its “metadata” to other side 

– address  – where to put data 

– length – maximum number of bytes of data to receive 

– remote “key” from the memory_region 

exs_send() matches its “metadata” with 

advertised “metadata” and issues RDMA 

WRITE_WITH_IMM to transfer data 

on both sides, EXS library gets completion 

status and enqueues it in event_queue along 

with user-defined request_id  
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Typical EXS Data Transfer 
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Other UNH-EXS functions 

exs_accept()  – ES-API standard 

exs_bind()   – UNH extension 

exs_close()   – UNH extension 

exs_connect()  – ES-API standard 

exs_fcntl()   – UNH extension 

exs_init()   – ES-API standard 

exs_listen()   – UNH extension 

exs_socket()  – UNH extension 



15 

Tuning UNH-EXS with exs_fcntl() 

Modeled on “normal UNIX” fcntl() 

Allows user to: 

– set maximum “small packet” size 

– set maximum “inline data” size 

– set completion thread’s CPU affinity 

– turn on “busy-polling” for completions 

– set receive buffer size (for SOCK_STREAMs only) 

– turn off use of receive buffer (for SOCK_STREAMs only) 

– set maximum “advertisement” credits 
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Obtaining UNH-EXS 

Complete source code tar file 
– www.iol.unh.edu/services/research/unh-exs 

– includes README giving installation instructions 

– includes overview document for programmers 

 

User overview documentation (how to use it) 
– www.iol.unh.edu/services/reseach/unh-exs/exs-overview.pdf 

– describes each EXS function in detail 

– has examples of converting existing sockets code to EXS 

http://www.iol.unh.edu/services/research/unh-exs
http://www.iol.unh.edu/services/research/unh-exs
http://www.iol.unh.edu/services/research/unh-exs
http://www.iol.unh.edu/services/testing/ofa/knowledgebase/exs-overview.pdf
http://www.iol.unh.edu/services/testing/ofa/knowledgebase/exs-overview.pdf
http://www.iol.unh.edu/services/testing/ofa/knowledgebase/exs-overview.pdf
http://www.iol.unh.edu/services/testing/ofa/knowledgebase/exs-overview.pdf
http://www.iol.unh.edu/services/testing/ofa/knowledgebase/exs-overview.pdf
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Relationships between EXS and 

“normal” socket and UNIX functions 

EXS memory regions, event queues, and fds can 

NOT be inherited by a child process 

 

UNH-EXS fds cannot be used with “normal” socket 

or UNIX I/O functions, such as: 

– read(), write(), poll(), select(), fcntl(), fstat(), etc. 

 

– UNH-EXS is thread safe, but not thread 

cancellation safe 
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EXS blast throughput over FDR 
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EXS blast CPU usage over FDR 
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EXS throughput performance 

The bigger the message, the smaller the CPU usage 

(for fixed number of outstanding messages) 

The more simultaneously outstanding messages, the 

higher the throughput (for fixed message size) 

Reasonable “sweet spot”: 512 Kibibytes, 4 messages 

– throughput: 45.6 Gigabytes/second 

– CPU usage: 14.0% user, 9.4% kernel, 23.4% total 

Ideal “sweet spot”: 2 Mibibytes, 4 messages 

– throughput:  47.9 Gigabytes/second 

– CPU usage:  4.2% user, 2.3% kernel, 6.5% total 
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EXS ping-pong round-trip time over FDR  
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EXS ping-pong CPU usage over FDR 
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EXS ping-pong performance 

Small messages very sensitive to 2 factors: 

‒ “busy-polling” vs “wait-for-notify” for completions 

‒ “pinning” threads to CPUs or not 

• two threads to pin: completion thread, mainline thread 

‒ together, “busy-polling” and “pinning” reduce RTT by 1/3, 

from 30 microseconds to 10 microseconds 

• one-way time reduced from 15 to 5 microseconds 

“busy-polling” is expensive in CPU usage 

– total for 2 threads increases from about 60% to 200% 

“wait-for-notify” not cheap due to kernel involvement 
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QUESTIONS? 
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THANK YOU! 


