
Improving Networks Worldwide.

EXS – EXtended Sockets

Robert D. Russell <rdr@iol.unh.edu>

Patrick MacArthur <pmacarth@iol.unh.edu>

InterOperability Laboratory

University of New Hampshire

121 Technology Drive, Suite 2

Durham, New Hampshire 03824-4716, USA

2

Extended Sockets API (ES-API)

Published by The Open Group in 2005

– opengroup.org/bookstore/catalog/c050.htm

Defines 2 major new extensions to “normal” sockets

– memory registration for zero-copy I/O

– event queues for asynchronous I/O

Designed to give programmer access to RDMA

3

EXS Goals

Expose RDMA features to programmer

– do not totally hide RDMA from programmer

– provide a more convenient interface than verbs

Extend well-known sockets API

– “normal” sockets are inadequate for direct RDMA use

– add a few new functions and data types

– repurpose many existing functions and data types

Target audience

– new applications intended for RDMA

– porting existing applications requires source code changes

4

UNH-EXS

Based on Open Group's ES-API

– with additional extensions in order to run entirely in user

space (because ES-API is expected to be integrated into

existing kernel sockets)

Runs on InfiniBand, iWARP, and RoCE

Provides both SOCK_SEQPACKET and

SOCK_STREAM connections using RC only

Library designed for use by user threads in Linux

Implemented entirely with user-space OFS verbs

Requires no change to OFS or Linux

5

UNH-EXS stack

Application Program

UNH-EXS Library

OFS Verbs Library

OFS Kernel Modules

InfiniBand Driver RoCE Driver iWARP Driver

InfiniBand HCA RoCE NIC iWARP RNIC

InfiniBand Fabric 10Gig Ethernet

user space

kernel space

CA

wire

6

EXS event queues

Extensions to deal with asynchronous events

New “event queue” and “event” data structures

– exs_qhandle_t

– exs_event_t

New queue manipulation functions

– exs_qcreate() - creates new event queue

– exs_qdelete() - deletes existing event queue

– exs_qdequeue() - removes events from existing event queue

– exs_qmodify() - modifies existing event queue

– exs_qstatus() - returns event queue attributes

7

EXS event queue usage

send(), recv(), accept(), connect(), close() have

extended versions: exs_send(), exs_recv(), etc.

‒ all these extended operations just start an action

‒ control returns immediately to user

‒ operation proceeds in parallel to user code

Extended operations have extra parameters, 1st is

– exs_qhandle_t parameter required to designate event queue

When I/O operation completes, EXS library adds

– exs_event_t containing status to designated event queue

8

EXS memory registration

 Extensions to deal with registered memory

New “memory region” data structure

– exs_mhandle_t

Two new registration functions

– exs_mregister() - creates new exs_mhandle_t by

registering user-defined virtual memory

– exs_mderegister() - destroys existing exs_mhandle_t

by unregistering its memory region

9

EXS memory region usage

 New exs_send() and exs_recv() functions

designate “memory region” with additional

parameter

‒ exs_mhandle_t result of previous registration

Normal address and length parameters must

refer to memory entirely within designated

“memory region”

10

Parameters to exs_send()

Four “normal socket” parameters

– fd – socket descriptor

– address – of data to be sent

– length – number of data bytes to send

– flags

Three new “extension” parameters

– event_queue – for posting completion event

– request_id – user-defined transaction id

– memory_region – must cover all data bytes

11

Parameters to exs_recv()

Four “normal socket” parameters

– fd – socket descriptor

– address – of where to put received data

– length – maximum number of data bytes to receive

– flags

Three new “extension” parameters

– event_queue – for posting completion event

– request_id – user-defined transaction id

– memory_region – must cover all data bytes

12

How EXS maps transfers onto verbs

exs_recv() issues RDMA SEND to “advertise”

its “metadata” to other side

– address – where to put data

– length – maximum number of bytes of data to receive

– remote “key” from the memory_region

exs_send() matches its “metadata” with

advertised “metadata” and issues RDMA

WRITE_WITH_IMM to transfer data

on both sides, EXS library gets completion

status and enqueues it in event_queue along

with user-defined request_id

13

Typical EXS Data Transfer

user

App

EXS

library
OFS CA wire user

App

EXS

library
OFS CA

exs_recv exs_send

exs_qdequeue exs_qdequeue

parallel

activity

parallel

activity

14

Other UNH-EXS functions

exs_accept() – ES-API standard

exs_bind() – UNH extension

exs_close() – UNH extension

exs_connect() – ES-API standard

exs_fcntl() – UNH extension

exs_init() – ES-API standard

exs_listen() – UNH extension

exs_socket() – UNH extension

15

Tuning UNH-EXS with exs_fcntl()

Modeled on “normal UNIX” fcntl()

Allows user to:

– set maximum “small packet” size

– set maximum “inline data” size

– set completion thread’s CPU affinity

– turn on “busy-polling” for completions

– set receive buffer size (for SOCK_STREAMs only)

– turn off use of receive buffer (for SOCK_STREAMs only)

– set maximum “advertisement” credits

16

Obtaining UNH-EXS

Complete source code tar file
– www.iol.unh.edu/services/research/unh-exs

– includes README giving installation instructions

– includes overview document for programmers

User overview documentation (how to use it)
– www.iol.unh.edu/services/reseach/unh-exs/exs-overview.pdf

– describes each EXS function in detail

– has examples of converting existing sockets code to EXS

http://www.iol.unh.edu/services/research/unh-exs
http://www.iol.unh.edu/services/research/unh-exs
http://www.iol.unh.edu/services/research/unh-exs
http://www.iol.unh.edu/services/testing/ofa/knowledgebase/exs-overview.pdf
http://www.iol.unh.edu/services/testing/ofa/knowledgebase/exs-overview.pdf
http://www.iol.unh.edu/services/testing/ofa/knowledgebase/exs-overview.pdf
http://www.iol.unh.edu/services/testing/ofa/knowledgebase/exs-overview.pdf
http://www.iol.unh.edu/services/testing/ofa/knowledgebase/exs-overview.pdf

17

Relationships between EXS and

“normal” socket and UNIX functions

EXS memory regions, event queues, and fds can

NOT be inherited by a child process

UNH-EXS fds cannot be used with “normal” socket

or UNIX I/O functions, such as:

– read(), write(), poll(), select(), fcntl(), fstat(), etc.

– UNH-EXS is thread safe, but not thread

cancellation safe

18

EXS blast throughput over FDR

19

EXS blast CPU usage over FDR

20

EXS throughput performance

The bigger the message, the smaller the CPU usage

(for fixed number of outstanding messages)

The more simultaneously outstanding messages, the

higher the throughput (for fixed message size)

Reasonable “sweet spot”: 512 Kibibytes, 4 messages

– throughput: 45.6 Gigabytes/second

– CPU usage: 14.0% user, 9.4% kernel, 23.4% total

Ideal “sweet spot”: 2 Mibibytes, 4 messages

– throughput: 47.9 Gigabytes/second

– CPU usage: 4.2% user, 2.3% kernel, 6.5% total

21

EXS ping-pong round-trip time over FDR

22

EXS ping-pong CPU usage over FDR

23

EXS ping-pong performance

Small messages very sensitive to 2 factors:

‒ “busy-polling” vs “wait-for-notify” for completions

‒ “pinning” threads to CPUs or not

• two threads to pin: completion thread, mainline thread

‒ together, “busy-polling” and “pinning” reduce RTT by 1/3,

from 30 microseconds to 10 microseconds

• one-way time reduced from 15 to 5 microseconds

“busy-polling” is expensive in CPU usage

– total for 2 threads increases from about 60% to 200%

“wait-for-notify” not cheap due to kernel involvement

24

Acknowledgments

This material is based upon work supported

by the National Science Foundation under

award number OCI-1127228.

Any opinions, findings, and conclusions or

recommendations expressed in this material

are those of the authors and do not

necessarily reflect the views of the National

Science Foundation.

25

QUESTIONS?

26

THANK YOU!

